A cytotoxicity study is performed on a poly(methyl methacrylate) polymer (PMMA) to be used for the fabrication of bone tissue by Rapid Prototyping (RP). The solution polymerization is conducted in a pilot plant reactor using more appropriated reagents in consideration of the medical application. Moreover, the polymer is efficiently handled to avoid the side effect of the monomer, reducing the concentration of this specie to 287,731 μg MMA/kg PMMA. The cytotoxicity of the polymer is determined through growth monitoring, adherence and morphology of L-929 cells. Additionally, MTT and LIVE/DEAD tests are performed. The results showed continuous and progressive growth of the cells on the surface of the specimens. Moreover, the material did not influence on the viability of mesenchymal cells and inverted fluorescence microscopy images showed a polyanionic dye calcein well retained in the cells in contact with the PMMA as well as the negative control after 72 hours. Thus, the polymer was efficiently synthesized and handled for the expected demands.

Cytotoxicity assessment of a poly(methyl methacrylate) synthesized for the direct fabrication of bone tissues

Manenti F.;
2018-01-01

Abstract

A cytotoxicity study is performed on a poly(methyl methacrylate) polymer (PMMA) to be used for the fabrication of bone tissue by Rapid Prototyping (RP). The solution polymerization is conducted in a pilot plant reactor using more appropriated reagents in consideration of the medical application. Moreover, the polymer is efficiently handled to avoid the side effect of the monomer, reducing the concentration of this specie to 287,731 μg MMA/kg PMMA. The cytotoxicity of the polymer is determined through growth monitoring, adherence and morphology of L-929 cells. Additionally, MTT and LIVE/DEAD tests are performed. The results showed continuous and progressive growth of the cells on the surface of the specimens. Moreover, the material did not influence on the viability of mesenchymal cells and inverted fluorescence microscopy images showed a polyanionic dye calcein well retained in the cells in contact with the PMMA as well as the negative control after 72 hours. Thus, the polymer was efficiently synthesized and handled for the expected demands.
2018
Cytotoxicity
Mesenchymal cells
PMMA
Synthesis
Viability
File in questo prodotto:
File Dimensione Formato  
document.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1196618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact