Before septation processes shape its four chambers, the embryonic heart is a straight tube that spontaneously bends and twists breaking the left-right symmetry. In particular, the heart tube is subjected to a cell remodeling inducing ventral bending and dextral torsion during the c-looping phase. In this work we propose a morphomechanical model for the torsion of the heart tube that behaves as a nonlinear elastic body. We hypothesize that this spontaneous looping can be modeled as a mechanical instability due to accumulation of residual stresses induced by the geometrical frustration of tissue remodeling, which mimics the cellular rearrangement within the heart tube. Thus, we perform a linear stability analysis of the resulting nonlinear elastic boundary value problem to determine the onset of c-looping as a function of the geometry of the tube and of the internal remodeling rate. We perform numerical simulations to study the fully nonlinear morphological transition, showing that the soft tube develops a realistic self-contacting looped shape in the physiological range of geometrical parameters.

Morphomechanical model of the Torsional c-looping in the embryonic heart

Bevilacqua G.;Ciarletta P.;Quarteroni A.
2021-01-01

Abstract

Before septation processes shape its four chambers, the embryonic heart is a straight tube that spontaneously bends and twists breaking the left-right symmetry. In particular, the heart tube is subjected to a cell remodeling inducing ventral bending and dextral torsion during the c-looping phase. In this work we propose a morphomechanical model for the torsion of the heart tube that behaves as a nonlinear elastic body. We hypothesize that this spontaneous looping can be modeled as a mechanical instability due to accumulation of residual stresses induced by the geometrical frustration of tissue remodeling, which mimics the cellular rearrangement within the heart tube. Thus, we perform a linear stability analysis of the resulting nonlinear elastic boundary value problem to determine the onset of c-looping as a function of the geometry of the tube and of the internal remodeling rate. We perform numerical simulations to study the fully nonlinear morphological transition, showing that the soft tube develops a realistic self-contacting looped shape in the physiological range of geometrical parameters.
2021
C-looping
Elastic stability
Embryogenesis
Heart tube
Nonlinear elasticity
Remodeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1195933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact