Time-Correlated Single-Photon Counting (TCSPC) is an excellent technique used in a great variety of scientific experiments to acquire exceptionally fast and faint light signals. Above all, in Fluorescence Lifetime Imaging (FLIM), it is widely recognized as the gold standard to record sub-nanosecond transient phenomena with picosecond precision. Unfortunately, TCSPC has an intrinsic limitation: to avoid the so-called pile-up distortion, the experiments have been historically carried out, limiting the acquisition rate below 5% of the excitation frequency. In 2017, we demonstrated that such a limitation can be overcome if the detector dead time is exactly matched with the excitation period, thus paving the way to unprecedented speedup of FLIM measurements. In this paper, we present the first single-channel system that implements the novel proposed methodology to be used in modern TCSPC experimental setups. To achieve this goal, we designed a compact detection head, including a custom single-photon avalanche diode externally driven by a fully integrated Active Quenching Circuit (AQC), featuring a finely tunable dead time and a short reset time. The output timing signal is extracted by using a picosecond precision Pick-Up Circuit (PUC) and fed to a newly developed timing module consisting of a mixed-architecture Fast Time to Amplitude Converter (F-TAC) followed by high-performance Analog-to-Digital Converters (ADCs). Data are transmitted in real-time to a Personal Computer (PC) at USB 3.0 rate for specific and custom elaboration. Preliminary experimental results show that the new TCSPC system is suitable for implementing the proposed technique, achieving, indeed, high timing precision along with a count rate as high as 40 Mcps.
Toward ultra-fast time-correlated single-photon counting: A compact module to surpass the pile-up limit
Farina Serena;Acconcia Giulia;Labanca Ivan;Ghioni Massimo;Rech Ivan
2021-01-01
Abstract
Time-Correlated Single-Photon Counting (TCSPC) is an excellent technique used in a great variety of scientific experiments to acquire exceptionally fast and faint light signals. Above all, in Fluorescence Lifetime Imaging (FLIM), it is widely recognized as the gold standard to record sub-nanosecond transient phenomena with picosecond precision. Unfortunately, TCSPC has an intrinsic limitation: to avoid the so-called pile-up distortion, the experiments have been historically carried out, limiting the acquisition rate below 5% of the excitation frequency. In 2017, we demonstrated that such a limitation can be overcome if the detector dead time is exactly matched with the excitation period, thus paving the way to unprecedented speedup of FLIM measurements. In this paper, we present the first single-channel system that implements the novel proposed methodology to be used in modern TCSPC experimental setups. To achieve this goal, we designed a compact detection head, including a custom single-photon avalanche diode externally driven by a fully integrated Active Quenching Circuit (AQC), featuring a finely tunable dead time and a short reset time. The output timing signal is extracted by using a picosecond precision Pick-Up Circuit (PUC) and fed to a newly developed timing module consisting of a mixed-architecture Fast Time to Amplitude Converter (F-TAC) followed by high-performance Analog-to-Digital Converters (ADCs). Data are transmitted in real-time to a Personal Computer (PC) at USB 3.0 rate for specific and custom elaboration. Preliminary experimental results show that the new TCSPC system is suitable for implementing the proposed technique, achieving, indeed, high timing precision along with a count rate as high as 40 Mcps.File | Dimensione | Formato | |
---|---|---|---|
2021_RevSciInstr_Farina_TowardUltraFastTimeCorrelatedSinglePhotonCounting.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
4.42 MB
Formato
Adobe PDF
|
4.42 MB | Adobe PDF | Visualizza/Apri |
2021_Farina_TowardUltraFastTcspc_SurpassPileUpLimit_PostPrint.pdf
accesso aperto
Descrizione: Paper
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
632.14 kB
Formato
Adobe PDF
|
632.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.