The performance of the Prognostics and Health Management (PHM) depends both on the functioning of the measurement acquisition system and on the actual state of the system being monitored. The dependencies between these systems must be considered when developing optimal inspection and maintenance strategies. This paper presents a methodology to support the definition maintenance strategies for PHM-equipped industrial systems. The methodology employs influence diagrams when seeking to maximize the expected utility of system operation. The optimization problem is solved by mixed-integer linear programming, subject to budget and technical constraints. Chance constraints can be also included, for instance to curtail risks based on measures such as the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) of system operation. The viability of the methodology is demonstrated by optimizing the inspection and maintenance strategy for a gas turbine equipped with PHM solution. The computation of the Value of Perfect Information (VoPI) provides additional insights on maintenance management.

Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems

Mancuso A.;Compare M.;Zio E.
2021-01-01

Abstract

The performance of the Prognostics and Health Management (PHM) depends both on the functioning of the measurement acquisition system and on the actual state of the system being monitored. The dependencies between these systems must be considered when developing optimal inspection and maintenance strategies. This paper presents a methodology to support the definition maintenance strategies for PHM-equipped industrial systems. The methodology employs influence diagrams when seeking to maximize the expected utility of system operation. The optimization problem is solved by mixed-integer linear programming, subject to budget and technical constraints. Chance constraints can be also included, for instance to curtail risks based on measures such as the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) of system operation. The viability of the methodology is demonstrated by optimizing the inspection and maintenance strategy for a gas turbine equipped with PHM solution. The computation of the Value of Perfect Information (VoPI) provides additional insights on maintenance management.
2021
Decision Programming
Gas turbine
Influence diagrams
Predictive maintenance
Prognostics and Health Management
Value of Perfect Information
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0951832021000946-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 615.75 kB
Formato Adobe PDF
615.75 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1195479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 24
social impact