In multi-component systems, degradation, maintenance, renewal and operational mode change continuously the operating conditions. The identification of the onset of abnormal conditions from signal measurements taken in such evolving environments can be quite challenging, due to the difficulty of distinguishing the real cause of the signal variations. In this work, we present a method for fault detection in evolving environments that uses a Sparse Autoencoder-based Deep Neural Network (SAE-DNN) and a novel procedure that remarkably reduces the computational burden for setting the values of the hyperparameters. The method is applied to a synthetic case study and to a bearing vibration dataset. The results show that it is able to accurately detect faults in multi-component systems, outperforming other state-of-the-art methods.

A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks

Yang Z.;Baraldi P.;Zio E.
2022-01-01

Abstract

In multi-component systems, degradation, maintenance, renewal and operational mode change continuously the operating conditions. The identification of the onset of abnormal conditions from signal measurements taken in such evolving environments can be quite challenging, due to the difficulty of distinguishing the real cause of the signal variations. In this work, we present a method for fault detection in evolving environments that uses a Sparse Autoencoder-based Deep Neural Network (SAE-DNN) and a novel procedure that remarkably reduces the computational burden for setting the values of the hyperparameters. The method is applied to a synthetic case study and to a bearing vibration dataset. The results show that it is able to accurately detect faults in multi-component systems, outperforming other state-of-the-art methods.
2022
Deep learning
Deep neural network
Evolving environment
Fault detection
Multi-component system
Sparse autoencoder
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0951832021007511-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1195431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 24
social impact