In multi-component systems, degradation, maintenance, renewal and operational mode change continuously the operating conditions. The identification of the onset of abnormal conditions from signal measurements taken in such evolving environments can be quite challenging, due to the difficulty of distinguishing the real cause of the signal variations. In this work, we present a method for fault detection in evolving environments that uses a Sparse Autoencoder-based Deep Neural Network (SAE-DNN) and a novel procedure that remarkably reduces the computational burden for setting the values of the hyperparameters. The method is applied to a synthetic case study and to a bearing vibration dataset. The results show that it is able to accurately detect faults in multi-component systems, outperforming other state-of-the-art methods.
A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks
Yang Z.;Baraldi P.;Zio E.
2022-01-01
Abstract
In multi-component systems, degradation, maintenance, renewal and operational mode change continuously the operating conditions. The identification of the onset of abnormal conditions from signal measurements taken in such evolving environments can be quite challenging, due to the difficulty of distinguishing the real cause of the signal variations. In this work, we present a method for fault detection in evolving environments that uses a Sparse Autoencoder-based Deep Neural Network (SAE-DNN) and a novel procedure that remarkably reduces the computational burden for setting the values of the hyperparameters. The method is applied to a synthetic case study and to a bearing vibration dataset. The results show that it is able to accurately detect faults in multi-component systems, outperforming other state-of-the-art methods.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0951832021007511-main.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.