Buildings’ long-term techno-economic performance monitoring is critical for benchmarking in order to reduce costs and environmental impact while providing adequate services. Reliable building stock performance data provide a fundamental knowledge foundation for evidence-based energy efficiency interventions and decarbonisation strategies. Simply put, an adequate understanding of building performance is required to reduce energy consumption, as well as associated costs and emissions. In this framework, Variable-base degree-days-based methods have been widely used for weather normalisation of energy statistics and energy monitoring for Measurement and Verification (M & V) purposes. The base temperature used to calculate degree-days is determined by building thermal characteristics, operation strategies, and occupant behaviour, and thus varies from building to building. In this paper, we develop a variable-base degrees days regression model, typically used for energy monitoring and M & V, using a “proxy” variable, the cost of energy services. The study’s goal is to assess the applicability of this type of model as a screening tool to analyse the impact of efficiency measures, as well as to understand the evolution of performance over time, and we test it on nine public schools in the Northern Italian city of Seregno. While not as accurate as M & V techniques, this regression-based approach can be a low-cost tool for tracking performance over time using cost data typically available in digital format and can work reasonably well with limited resolution, such as monthly data. The modelling methodology is simple, scalable and can be automated further, contributing to long-term techno-economic performance monitoring of building stock in the context of incremental built environment digitalization.

Long-Term Techno-Economic Performance Monitoring to Promote Built Environment Decarbonisation and Digital Transformation—A Case Study

Re Cecconi F.;Ricci M.
2022-01-01

Abstract

Buildings’ long-term techno-economic performance monitoring is critical for benchmarking in order to reduce costs and environmental impact while providing adequate services. Reliable building stock performance data provide a fundamental knowledge foundation for evidence-based energy efficiency interventions and decarbonisation strategies. Simply put, an adequate understanding of building performance is required to reduce energy consumption, as well as associated costs and emissions. In this framework, Variable-base degree-days-based methods have been widely used for weather normalisation of energy statistics and energy monitoring for Measurement and Verification (M & V) purposes. The base temperature used to calculate degree-days is determined by building thermal characteristics, operation strategies, and occupant behaviour, and thus varies from building to building. In this paper, we develop a variable-base degrees days regression model, typically used for energy monitoring and M & V, using a “proxy” variable, the cost of energy services. The study’s goal is to assess the applicability of this type of model as a screening tool to analyse the impact of efficiency measures, as well as to understand the evolution of performance over time, and we test it on nine public schools in the Northern Italian city of Seregno. While not as accurate as M & V techniques, this regression-based approach can be a low-cost tool for tracking performance over time using cost data typically available in digital format and can work reasonably well with limited resolution, such as monthly data. The modelling methodology is simple, scalable and can be automated further, contributing to long-term techno-economic performance monitoring of building stock in the context of incremental built environment digitalization.
2022
Data-driven energy modelling
Data-driven methods
Energy analytics
Interpretable machine-learning
Measurement and Verification
Regression-based approaches
Techno-economic analysis
File in questo prodotto:
File Dimensione Formato  
sustainability-14-00644-v2.pdf

accesso aperto

: Publisher’s version
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1194963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact