Quantitative Risk Assessment (QRA) of Oil & Gas installations implies modeling accidents’ evolution. Computational Fluid Dynamics (CFD) is one way to do this, and off-the-shelf tools are available, such as FLACS developed by Gexcon US and KFX developed by DNV-GL. A recent model based on ANSYS Fluent, named SBAM (Source Box Accident Model) was proposed by the SEADOG lab at Politecnico di Torino. In this work, we address one major concern related to the use of CFD tools for accident simulation, which is the relevant computational demand that limits the number of simulations that can be performed. This brings with it the challenge of quantifying the uncertainty of the results obtained, which requires performing a large number of simulations. Here we propose a procedure for the Uncertainty Quantification (UQ) of FLACX, KFX and SBAM, and show its performance considering an accidental high-pressure methane release scenario in a realistic offshore Oil & Gas (O & G) platform deck. The novelty of the work is that the UQ of the CFD models, which is performed relying on well-consolidated approaches such as the Grid Convergence Index (GCI) method and a generalization of Richardson’s extrapolation, is originally propagated to a set of risk measures that can be used to support the decision-making process to prevent/mitigate accidental scenarios.

Quantification of uncertainty in CFD simulation of accidental gas release for O & G quantitative risk assessment

Di Maio F.;Mereu R.;Zio E.
2021-01-01

Abstract

Quantitative Risk Assessment (QRA) of Oil & Gas installations implies modeling accidents’ evolution. Computational Fluid Dynamics (CFD) is one way to do this, and off-the-shelf tools are available, such as FLACS developed by Gexcon US and KFX developed by DNV-GL. A recent model based on ANSYS Fluent, named SBAM (Source Box Accident Model) was proposed by the SEADOG lab at Politecnico di Torino. In this work, we address one major concern related to the use of CFD tools for accident simulation, which is the relevant computational demand that limits the number of simulations that can be performed. This brings with it the challenge of quantifying the uncertainty of the results obtained, which requires performing a large number of simulations. Here we propose a procedure for the Uncertainty Quantification (UQ) of FLACX, KFX and SBAM, and show its performance considering an accidental high-pressure methane release scenario in a realistic offshore Oil & Gas (O & G) platform deck. The novelty of the work is that the UQ of the CFD models, which is performed relying on well-consolidated approaches such as the Grid Convergence Index (GCI) method and a generalization of Richardson’s extrapolation, is originally propagated to a set of risk measures that can be used to support the decision-making process to prevent/mitigate accidental scenarios.
2021
Computational Fluid Dynamics (CFD)
Gas release
Impinging jet
Quantitative Risk Assessment (QRA)
Uncertainty Quantification
File in questo prodotto:
File Dimensione Formato  
2021_10_27_UQ_of_CFD_approaches.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 743.28 kB
Formato Adobe PDF
743.28 kB Adobe PDF Visualizza/Apri
energies-14-08117.pdf

accesso aperto

: Publisher’s version
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1194443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact