We illustrate a bare-bones mathematical model that is able to account for the elementary mechanics of the mitral valve when the leaflets of the valve close under the systolic pressure. The mechanical model exploits the aspect ratio of the valve leaflets that are represented as inextensible rods, subject to the blood pressure, with one fixed endpoint (on the endocardium) and an attached wire anchored to the papillary muscle. Force and torque balance equations are obtained exploiting the principle of virtual work, where the first contact point between rods is identified by the Weierstrass-Erdmann condition of variational nature. The chordae tendineae are modeled as a force applied to the free endpoint of the flaps. Different possible boundary conditions are investigated at the mitral annulus, and, by an asymptotic analysis, we demonstrate that in the pressure regime of interest generic boundary conditions generate a tensional boundary layer. Conversely, a specific choice of the boundary condition inhibits the generation of high tensional gradients in a small layer.

Elementary Mechanics of the Mitral Valve

Turzi, S.;
2022-01-01

Abstract

We illustrate a bare-bones mathematical model that is able to account for the elementary mechanics of the mitral valve when the leaflets of the valve close under the systolic pressure. The mechanical model exploits the aspect ratio of the valve leaflets that are represented as inextensible rods, subject to the blood pressure, with one fixed endpoint (on the endocardium) and an attached wire anchored to the papillary muscle. Force and torque balance equations are obtained exploiting the principle of virtual work, where the first contact point between rods is identified by the Weierstrass-Erdmann condition of variational nature. The chordae tendineae are modeled as a force applied to the free endpoint of the flaps. Different possible boundary conditions are investigated at the mitral annulus, and, by an asymptotic analysis, we demonstrate that in the pressure regime of interest generic boundary conditions generate a tensional boundary layer. Conversely, a specific choice of the boundary condition inhibits the generation of high tensional gradients in a small layer.
2022
File in questo prodotto:
File Dimensione Formato  
2022_SIAP_Elementary mechanics mitral valve.pdf

Accesso riservato

: Publisher’s version
Dimensione 995.11 kB
Formato Adobe PDF
995.11 kB Adobe PDF   Visualizza/Apri
11311-1194097_Turzi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 943.64 kB
Formato Adobe PDF
943.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1194097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact