We consider the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility in a bounded domain Ω⊂R^d, d≤3. We first prove the existence of maximal strong solutions in weighted (in time) L^p spaces. Then we establish further regularity properties of the solution through maximal regularity theory. Finally, we revisit the separation property in an appendix.

Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility

M. Grasselli
2021-01-01

Abstract

We consider the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility in a bounded domain Ω⊂R^d, d≤3. We first prove the existence of maximal strong solutions in weighted (in time) L^p spaces. Then we establish further regularity properties of the solution through maximal regularity theory. Finally, we revisit the separation property in an appendix.
2021
File in questo prodotto:
File Dimensione Formato  
11311-1193976_Grasselli.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 442.67 kB
Formato Adobe PDF
442.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193976
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact