Engineering efficiency is paramount for the introduction of novel systems and formats of analysis. This work extends an accessible and efficient analysis platform by combining the kinematic equilibrium approach of limit analysis with the single degree of freedom nature of a hinge-controlled masonry arch to perform dynamic modelling of applied two-dimensional acceleration vectors. Utilising ideal conditions, minimum work-paths are formulated to describe the work required to drive the arch to collapse. Then, assuming conservative work allows the formation of a spatial description of kinetic energy, and ultimately the establishment of the time domain for constant 2D accelerations. A dynamic time incremental analysis structure is then formulated based upon the assumption of constant acceleration for each time step. This dynamic model propagates the centroid displacement and kinetic energy through an applied acceleration sequence. Lastly, the dynamic model under ideal conditions is tested for validity through half-cycle collapse domain benchmark and the conservation of energy.

Dynamic modelling structure of hinge-controlled masonry arches and 2D accelerations

Milani G.;
2021-01-01

Abstract

Engineering efficiency is paramount for the introduction of novel systems and formats of analysis. This work extends an accessible and efficient analysis platform by combining the kinematic equilibrium approach of limit analysis with the single degree of freedom nature of a hinge-controlled masonry arch to perform dynamic modelling of applied two-dimensional acceleration vectors. Utilising ideal conditions, minimum work-paths are formulated to describe the work required to drive the arch to collapse. Then, assuming conservative work allows the formation of a spatial description of kinetic energy, and ultimately the establishment of the time domain for constant 2D accelerations. A dynamic time incremental analysis structure is then formulated based upon the assumption of constant acceleration for each time step. This dynamic model propagates the centroid displacement and kinetic energy through an applied acceleration sequence. Lastly, the dynamic model under ideal conditions is tested for validity through half-cycle collapse domain benchmark and the conservation of energy.
2021
Dynamic analysis
KCLC
Kinematic collapse load calculator
Masonry arch
Near-real time analysis
Seismic analysis
File in questo prodotto:
File Dimensione Formato  
2021_IJMRI2.pdf

Accesso riservato

Descrizione: 2021_IJMRI_Stockdale_Sarhosis
: Publisher’s version
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact