In this paper, a series of experimental investigations was performed on full-scale railway axles to analyze the fatigue crack growth behavior of EA4T steel under load spectrum derived from real operating conditions. The experimental results were compared to life predictions carried out adopting two models: (i) the conventional Nasgro equation and (ii) the cyclic R-curve concept implemented in the Modified Nasgro equation for describing the crack growth behavior of an arbitrary crack length. The results show that the life predictions performed by means of the Modified Nasgro equation coincide well with the experimental results with an underestimation of the residual lifetime less than 32%, while the traditional Nasgro equation leads to significant overestimation (≈120%) of the residual lifetime for load spectra close to the in service scenario.

Investigation of fatigue crack growth in full-scale railway axles subjected to service load spectra: Experiments and predictive models

Pourheidar A.;Patriarca L.;Beretta S.;
2021-01-01

Abstract

In this paper, a series of experimental investigations was performed on full-scale railway axles to analyze the fatigue crack growth behavior of EA4T steel under load spectrum derived from real operating conditions. The experimental results were compared to life predictions carried out adopting two models: (i) the conventional Nasgro equation and (ii) the cyclic R-curve concept implemented in the Modified Nasgro equation for describing the crack growth behavior of an arbitrary crack length. The results show that the life predictions performed by means of the Modified Nasgro equation coincide well with the experimental results with an underestimation of the residual lifetime less than 32%, while the traditional Nasgro equation leads to significant overestimation (≈120%) of the residual lifetime for load spectra close to the in service scenario.
2021
EA4T steel
Fatigue crack growth
Railway axle
Residual lifetime prediction
Variable amplitude loading
File in questo prodotto:
File Dimensione Formato  
metals_axles.pdf

accesso aperto

: Publisher’s version
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact