The emergence of a photonic band gap in Ge-on-Si micropillars ordered in a two-dimensional square lattice is demonstrated by the finite-element method. Candidate architectures are fabricated through epitaxy and the opening of the photonic band gap experimentally proved by photoluminescence spectroscopy. When the direct-gap emission of Ge is resonantly driven into the photonic gap, light propagation in the lattice plane is inhibited. Emission is eventually funneled out of plane, yielding a giant increase, i.e., about one order of magnitude, in the observed intensity. The demonstration of light routing in microcrystals' lattices opens interesting possibilities for Si photonics. The epitaxial self-assembled microstructures introduced here can be monotonically integrated on Si to improve the performances of group-IV lasers or engineered to optimize the working wavelength of future quantum photonic circuits.

Photonic Band Gap and Light Routing in Self-Assembled Lattices of Epitaxial Ge-on-Si Microstructures

Barzaghi, Andrea;Isella, Giovanni;
2021-01-01

Abstract

The emergence of a photonic band gap in Ge-on-Si micropillars ordered in a two-dimensional square lattice is demonstrated by the finite-element method. Candidate architectures are fabricated through epitaxy and the opening of the photonic band gap experimentally proved by photoluminescence spectroscopy. When the direct-gap emission of Ge is resonantly driven into the photonic gap, light propagation in the lattice plane is inhibited. Emission is eventually funneled out of plane, yielding a giant increase, i.e., about one order of magnitude, in the observed intensity. The demonstration of light routing in microcrystals' lattices opens interesting possibilities for Si photonics. The epitaxial self-assembled microstructures introduced here can be monotonically integrated on Si to improve the performances of group-IV lasers or engineered to optimize the working wavelength of future quantum photonic circuits.
2021
File in questo prodotto:
File Dimensione Formato  
PhysRevApplied.16.064024.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact