In the ddCOSMO solvation model for the numerical simulation of molecules (chains of atoms), the unusual observation was made that the associated Schwarz domain-decomposition method converges independently of the number of subdomains (atoms) and this without coarse correction, i.e., the one-level Schwarz method is scalable. We analyzed this unusual property for the simplified case of a rectangular molecule and square subdomains using Fourier analysis, leading to robust convergence estimates in the L2-norm and later also for chains of subdomains represented by disks using maximum principle arguments, leading to robust convergence estimates in L∞. A convergence analysis in the more natural H1-setting proving convergence independently of the number of subdomains was, however, missing. We close this gap in this paper using tools from the theory of alternating projection methods and estimates introduced by P.-L. Lions for the study of domain decomposition methods. We prove that robust convergence independently of the number of subdomains is possible also in H1 and show furthermore that even for certain two-dimensional domains with holes, Schwarz methods can be scalable without coarse-space corrections. As a by-product, we review some of the results of P.-L. Lions [On the Schwarz alternating method. I, in Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988, pp. 1–42] and in some cases provide simpler proofs.

Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III

Ciaramella G.;
2018-01-01

Abstract

In the ddCOSMO solvation model for the numerical simulation of molecules (chains of atoms), the unusual observation was made that the associated Schwarz domain-decomposition method converges independently of the number of subdomains (atoms) and this without coarse correction, i.e., the one-level Schwarz method is scalable. We analyzed this unusual property for the simplified case of a rectangular molecule and square subdomains using Fourier analysis, leading to robust convergence estimates in the L2-norm and later also for chains of subdomains represented by disks using maximum principle arguments, leading to robust convergence estimates in L∞. A convergence analysis in the more natural H1-setting proving convergence independently of the number of subdomains was, however, missing. We close this gap in this paper using tools from the theory of alternating projection methods and estimates introduced by P.-L. Lions for the study of domain decomposition methods. We prove that robust convergence independently of the number of subdomains is possible also in H1 and show furthermore that even for certain two-dimensional domains with holes, Schwarz methods can be scalable without coarse-space corrections. As a by-product, we review some of the results of P.-L. Lions [On the Schwarz alternating method. I, in Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988, pp. 1–42] and in some cases provide simpler proofs.
2018
Chain of subdomains
COSMO solvation model
Domain decomposition methods
Elliptic PDE
Laplace equation
Schwarz methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 9
social impact