This paper is devoted to a theoretical and numerical investigation of Nash equilibria and Nash bargaining problems governed by bilinear (input-affine) differential models. These systems with a bilinear state-control structure arise in many applications in, e.g., biology, economics, physics, where competition between different species, agents, and forces needs to be modelled. For this purpose, the concept of Nash equilibria (NE) appears appropriate, and the building blocks of the resulting differential Nash games are different control functions associated with different players that pursue different non-cooperative objectives. In this framework, existence of Nash equilibria is proved and computed with a semi-smooth Newton scheme combined with a relaxation method. Further, a related Nash bargaining (NB) problem is discussed. This aims at determining an improvement of all players’ objectives with respect to the Nash equilibria. Results of numerical experiments successfully demonstrate the effectiveness of the proposed NE and NB computational framework.

Nash Equilibria and Bargaining Solutions of Differential Bilinear Games

Ciaramella G.;
2021-01-01

Abstract

This paper is devoted to a theoretical and numerical investigation of Nash equilibria and Nash bargaining problems governed by bilinear (input-affine) differential models. These systems with a bilinear state-control structure arise in many applications in, e.g., biology, economics, physics, where competition between different species, agents, and forces needs to be modelled. For this purpose, the concept of Nash equilibria (NE) appears appropriate, and the building blocks of the resulting differential Nash games are different control functions associated with different players that pursue different non-cooperative objectives. In this framework, existence of Nash equilibria is proved and computed with a semi-smooth Newton scheme combined with a relaxation method. Further, a related Nash bargaining (NB) problem is discussed. This aims at determining an improvement of all players’ objectives with respect to the Nash equilibria. Results of numerical experiments successfully demonstrate the effectiveness of the proposed NE and NB computational framework.
2021
Bilinear evolution models
Lotka–Volterra models
Nash bargaining problem
Nash equilibria
Newton methods
Optimal control theory
Quantum evolution models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact