A novel and detailed convergence analysis is presented for a greedy algorithm that was introduced in [Y. Maday and J. Salomon, Joint Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, 2009, pp. 375-379] for operator reconstruction problems in the field of quantum mechanics. This algorithm is based on an offline/online decomposition of the reconstruction process and on an ansatz for the unknown operator obtained by an a priori chosen set of linearly independent matrices. The presented convergence analysis focuses on linear-quadratic (optimization) problems governed by linear differential systems and reveals the strong dependence of the performance of the greedy algorithm on the observability properties of the system and on the ansatz of the basis elements. Moreover, the analysis allows us to use a precise (and in some sense optimal) choice of basis elements for the linear case and led to the introduction of a new and more robust optimized greedy reconstruction algorithm. This optimized approach also applies to nonlinear Hamiltonian reconstruction problems, and its efficiency is demonstrated by numerical experiments.

Analysis of a Greedy Reconstruction Algorithm

Ciaramella, G.;
2021-01-01

Abstract

A novel and detailed convergence analysis is presented for a greedy algorithm that was introduced in [Y. Maday and J. Salomon, Joint Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, 2009, pp. 375-379] for operator reconstruction problems in the field of quantum mechanics. This algorithm is based on an offline/online decomposition of the reconstruction process and on an ansatz for the unknown operator obtained by an a priori chosen set of linearly independent matrices. The presented convergence analysis focuses on linear-quadratic (optimization) problems governed by linear differential systems and reveals the strong dependence of the performance of the greedy algorithm on the observability properties of the system and on the ansatz of the basis elements. Moreover, the analysis allows us to use a precise (and in some sense optimal) choice of basis elements for the linear case and led to the introduction of a new and more robust optimized greedy reconstruction algorithm. This optimized approach also applies to nonlinear Hamiltonian reconstruction problems, and its efficiency is demonstrated by numerical experiments.
2021
File in questo prodotto:
File Dimensione Formato  
VQR3_AAM.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 557.8 kB
Formato Adobe PDF
557.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1193269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact