The use of RPAS for civil purposes is spreading across Europe and worldwide; Aviation Authorities are working to layout regulations to assure a safe and secure integration of RPAS with manned aircraft across both controlled and uncontrolled (below 500 Feet of altitude) airspace. Following the identification of a selection of safety risks potentially associated to RPAS Specific Category of operations, an original strategy of risks mitigation focused on rule-based ‘Expert Systems’, has been conceived and it is discussed in this work. The article recalls the main components of rule-based ‘Expert Systems’ that is the knowledge basis and the rules to instruct the ‘Expert system’. Then the work describes the implementation of the rules as statements derived from a safety risk matrix associated to RPAS capable of performing Specific Category operations within the U-space. Finally, the idea of integrating the ‘Expert System’ as a software module within RPAS functional architecture is presented and discussed. Such solution is deemed to be a valuable novelty for future implementations of advanced RPAS autopilots capable of recognizing and solving in flight/on ground operational safety risks in such a way to speed up the integration of RPAS into not segregated airspace and their market development.

Integration of rule-based ‘Expert Systems’ on RPAS capable of specific category operations within the U-space: An original mitigation strategy for operational safety risks

Grimaccia F.;
2021-01-01

Abstract

The use of RPAS for civil purposes is spreading across Europe and worldwide; Aviation Authorities are working to layout regulations to assure a safe and secure integration of RPAS with manned aircraft across both controlled and uncontrolled (below 500 Feet of altitude) airspace. Following the identification of a selection of safety risks potentially associated to RPAS Specific Category of operations, an original strategy of risks mitigation focused on rule-based ‘Expert Systems’, has been conceived and it is discussed in this work. The article recalls the main components of rule-based ‘Expert Systems’ that is the knowledge basis and the rules to instruct the ‘Expert system’. Then the work describes the implementation of the rules as statements derived from a safety risk matrix associated to RPAS capable of performing Specific Category operations within the U-space. Finally, the idea of integrating the ‘Expert System’ as a software module within RPAS functional architecture is presented and discussed. Such solution is deemed to be a valuable novelty for future implementations of advanced RPAS autopilots capable of recognizing and solving in flight/on ground operational safety risks in such a way to speed up the integration of RPAS into not segregated airspace and their market development.
2021
IOP Conference Series: Materials Science and Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1192700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact