Class imbalance is a common issue in many domain applications of learning algorithms. Oftentimes, in the same domains it is much more relevant to correctly classify and profile minority class observations. This need can be addressed by feature selection (FS), that offers several further advantages, such as decreasing computational costs, aiding inference and interpretability. However, traditional FS techniques may become suboptimal in the presence of strongly imbalanced data. To achieve FS advantages in this setting, we propose a filtering FS algorithm ranking feature importance on the basis of the reconstruction error of a deep sparse autoencoders ensemble (DSAEE). We use each DSAE trained only on majority class to reconstruct both classes. From the analysis of the aggregated reconstruction error, we determine the features where the minority class presents a different distribution of values w.r.t. the overrepresented one, thus identifying the most relevant features to discriminate between the two. We empirically demonstrate the efficacy of our algorithm in several experiments, both simulated and on high-dimensional datasets of varying sample size, showcasing its capability to select relevant and generalizable features to profile and classify minority class, outperforming other benchmark FS methods. We also briefly present a real application in radiogenomics, where the methodology was applied successfully.

Feature selection for imbalanced data with deep sparse autoencoders ensemble

Massi, Michela Carlotta;Ieva, Francesca;Paganoni, Anna Maria
2021-01-01

Abstract

Class imbalance is a common issue in many domain applications of learning algorithms. Oftentimes, in the same domains it is much more relevant to correctly classify and profile minority class observations. This need can be addressed by feature selection (FS), that offers several further advantages, such as decreasing computational costs, aiding inference and interpretability. However, traditional FS techniques may become suboptimal in the presence of strongly imbalanced data. To achieve FS advantages in this setting, we propose a filtering FS algorithm ranking feature importance on the basis of the reconstruction error of a deep sparse autoencoders ensemble (DSAEE). We use each DSAE trained only on majority class to reconstruct both classes. From the analysis of the aggregated reconstruction error, we determine the features where the minority class presents a different distribution of values w.r.t. the overrepresented one, thus identifying the most relevant features to discriminate between the two. We empirically demonstrate the efficacy of our algorithm in several experiments, both simulated and on high-dimensional datasets of varying sample size, showcasing its capability to select relevant and generalizable features to profile and classify minority class, outperforming other benchmark FS methods. We also briefly present a real application in radiogenomics, where the methodology was applied successfully.
2021
File in questo prodotto:
File Dimensione Formato  
sam.11567.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF   Visualizza/Apri
11311-1192007_Massi.pdf

Open Access dal 13/12/2022

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 5.71 MB
Formato Adobe PDF
5.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1192007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact