We define and study, for any Coxeter system (W, S), modules over its Temperley-Lieb algebra, two for each quotient WJ, which have generators indexed by the fully commutative elements of WJ. Our results are new even in type A and include, for J=θ, those obtained in [16] and [17].

Parabolic Temperley-Lieb modules and polynomials

Sentinelli P.
2016-01-01

Abstract

We define and study, for any Coxeter system (W, S), modules over its Temperley-Lieb algebra, two for each quotient WJ, which have generators indexed by the fully commutative elements of WJ. Our results are new even in type A and include, for J=θ, those obtained in [16] and [17].
2016
Coxeter groups
Kazhdan-lusztig polynomials
P-kernels
Temperley-lieb algebras
File in questo prodotto:
File Dimensione Formato  
Parabolic Temperley–Lieb modules and polynomials - P. Sentinelli.pdf

Accesso riservato

: Publisher’s version
Dimensione 471.19 kB
Formato Adobe PDF
471.19 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1190464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact