For a prime number p and any natural number n we introduce, by giving an explicit recursive formula, the p-Jones-Wenzl projector JWnp, an element of the Temperley-Lieb algebra TLn(2) with coefficients in Fp. We prove that these projectors give the indecomposable objects in the A˜1-Hecke category over Fp, or equivalently, they give the projector in EndSLjavax.xml.bind.JAXBElement@6cdb2f49(Fjavax.xml.bind.JAXBElement@2c3fdb2‾)((Fp2)⊗n) to the top tilting module. The way in which we find these projectors is by categorifying the fractal appearing in the expression of the p-canonical basis in terms of the Kazhdan-Lusztig basis for A˜1.
p-Jones-Wenzl idempotents
Sentinelli P.
2019-01-01
Abstract
For a prime number p and any natural number n we introduce, by giving an explicit recursive formula, the p-Jones-Wenzl projector JWnp, an element of the Temperley-Lieb algebra TLn(2) with coefficients in Fp. We prove that these projectors give the indecomposable objects in the A˜1-Hecke category over Fp, or equivalently, they give the projector in EndSLjavax.xml.bind.JAXBElement@6cdb2f49(Fjavax.xml.bind.JAXBElement@2c3fdb2‾)((Fp2)⊗n) to the top tilting module. The way in which we find these projectors is by categorifying the fractal appearing in the expression of the p-canonical basis in terms of the Kazhdan-Lusztig basis for A˜1.File | Dimensione | Formato | |
---|---|---|---|
p-Jones-Wenzl idempotents.pdf
Accesso riservato
:
Publisher’s version
Dimensione
633.36 kB
Formato
Adobe PDF
|
633.36 kB | Adobe PDF | Visualizza/Apri |
11311-1190462_Sentinelli.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
486.66 kB
Formato
Adobe PDF
|
486.66 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.