We define an idempotent of the Temperley-Lieb algebra of any finite Coxeter system, which reduces, in type A, to the known Jones-Wenzl idempotent. We give, for any pair of parabolic subgroups, a recursive formula generalizing the well-known one. This approach gives a wide class of recursive formulas for the classical Jones-Wenzl idempotent. We also compute explicitly the coefficient corresponding to the maximal element of any minuscule quotient, when the idempotent is expressed in the basis of fully commutative elements.

The Jones-Wenzl idempotent of a generalized Temperley-Lieb algebra

Sentinelli P.
2019-01-01

Abstract

We define an idempotent of the Temperley-Lieb algebra of any finite Coxeter system, which reduces, in type A, to the known Jones-Wenzl idempotent. We give, for any pair of parabolic subgroups, a recursive formula generalizing the well-known one. This approach gives a wide class of recursive formulas for the classical Jones-Wenzl idempotent. We also compute explicitly the coefficient corresponding to the maximal element of any minuscule quotient, when the idempotent is expressed in the basis of fully commutative elements.
2019
Finite Coxeter group
Jones-Wenzl idempotent
Minuscule quotient
Temperley-Lieb algebra
File in questo prodotto:
File Dimensione Formato  
The Jones-Wenzl idempotent of a generalized Temperley-Lieb algebra.pdf

Accesso riservato

: Publisher’s version
Dimensione 397.4 kB
Formato Adobe PDF
397.4 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1190461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact