Supercritical CO2 cycles are a promising technology, but their performance drops for hot cold source, in hot and arid environments, typical of a CSP field. The adoption of CO2-based mixtures as working fluid can turn supercritical CO2 cycles into transcritical cycles even at high temperatures, with performance improvement and significant power block cost reduction. The concept is addressed within the SCARABEUS project, an EU funded Horizon 2020 project dedicated to the use of CO2-based mixtures for CSP plants. In this work, the use of the CO2+C6F6 mixture as working fluid for a power cycle coupled with a solar tower is analysed. The potentiality of the mixture is presented, given its very low toxicity and its good thermal stability limits. Comparisons with the sCO2 cycle is performed for some typical configurations, in order to underline the advantages of the mixture, and a preliminary design of the turbine is presented, developed in a 1D tool.

Investigation of CO2 mixtures to overcome the limits of sCO2 cycles

Morosini, Ettore;Manzolini, Giampaolo;
2021-01-01

Abstract

Supercritical CO2 cycles are a promising technology, but their performance drops for hot cold source, in hot and arid environments, typical of a CSP field. The adoption of CO2-based mixtures as working fluid can turn supercritical CO2 cycles into transcritical cycles even at high temperatures, with performance improvement and significant power block cost reduction. The concept is addressed within the SCARABEUS project, an EU funded Horizon 2020 project dedicated to the use of CO2-based mixtures for CSP plants. In this work, the use of the CO2+C6F6 mixture as working fluid for a power cycle coupled with a solar tower is analysed. The potentiality of the mixture is presented, given its very low toxicity and its good thermal stability limits. Comparisons with the sCO2 cycle is performed for some typical configurations, in order to underline the advantages of the mixture, and a preliminary design of the turbine is presented, developed in a 1D tool.
2021
76th Italian National Congress ATI (ATI 2021)
File in questo prodotto:
File Dimensione Formato  
e3sconf_ati2021_08010.pdf

accesso aperto

: Publisher’s version
Dimensione 536.03 kB
Formato Adobe PDF
536.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1190354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact