The search of compounds emitting in the near-infrared (NIR) has been accelerated owing to their use in biomedical and telecommunications applications. In this regard, nanographenes (NGs) are attractive materials adequate for integration with other technologies, which have recently demonstrated amplified spontaneous emission (ASE) and lasing across the visible spectrum. Here, the optical and ASE properties of four-zigzag edged NGs of the [m,n]peri-acenoacene family are reported, whose size is increased through conjugation extension by varying n (from 3 to 5) while keeping m = 2. Results show that such 1D conjugation extension method is more efficient in terms of shifting the photoluminescence (PL) to the infrared (PL at 710 nm in the larger compound, PP-Ar) than through 2D conjugation extension as in previously reported NGs (PL at 676 nm with the largest compound FZ3, with n = 3 and m = 4). Additionally, PP-Ar shows dual-ASE (at 726 and 787 nm), whose origin is elucidated through Raman and transient absorption spectroscopies. These compounds’ potential for red and NIR lasing is demonstrated through the fabrication of distributed feedback lasers with top-layer resonators. This study paves the way towards the development of stable low-cost all-plastic NIR lasers.

Near-Infrared Lasing in Four-Zigzag Edged Nanographenes by 1D versus 2D Electronic π-Conjugation

Ross A. M.;Paterno G. M.;Scotognella F.;Lanzani G.;
2021-01-01

Abstract

The search of compounds emitting in the near-infrared (NIR) has been accelerated owing to their use in biomedical and telecommunications applications. In this regard, nanographenes (NGs) are attractive materials adequate for integration with other technologies, which have recently demonstrated amplified spontaneous emission (ASE) and lasing across the visible spectrum. Here, the optical and ASE properties of four-zigzag edged NGs of the [m,n]peri-acenoacene family are reported, whose size is increased through conjugation extension by varying n (from 3 to 5) while keeping m = 2. Results show that such 1D conjugation extension method is more efficient in terms of shifting the photoluminescence (PL) to the infrared (PL at 710 nm in the larger compound, PP-Ar) than through 2D conjugation extension as in previously reported NGs (PL at 676 nm with the largest compound FZ3, with n = 3 and m = 4). Additionally, PP-Ar shows dual-ASE (at 726 and 787 nm), whose origin is elucidated through Raman and transient absorption spectroscopies. These compounds’ potential for red and NIR lasing is demonstrated through the fabrication of distributed feedback lasers with top-layer resonators. This study paves the way towards the development of stable low-cost all-plastic NIR lasers.
2021
distributed feedback laser
dual amplified spontaneous emission
nanographene
near-infrared
organic lasers
peri-acenoacene
File in questo prodotto:
File Dimensione Formato  
Muñoz-Mármol et al. - 2021 - Near-Infrared Lasing in Four-Zigzag Edged Nanograp.pdf

accesso aperto

: Publisher’s version
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1189968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact