Nanoparticles are applied in a variety of industrially relevant transformations as heterogeneous catalysts typically with the help of an external force (pressure, temperature, or voltage) to steer the chemistry. The modification of platinum nanoparticles by a phosphate–amino surfactant enables catalysis without external energy supply in the hydrogenation of nitrobenzene to aniline. This can be attributed to the complex surfactant/metal interface which is able to split hydrogen into protons and electrons. The subsequent hydrogenation process mimics the electrochemical reduction described by Haber. The surfactant decorated Pt catalyst is two orders of magnitude more active than the state-of-the-art Pb-poisoned Pt catalyst. Our study provides a new approach to understand the functionality of emerging catalytic systems and can be applied to design new materials with optimal interfaces.

Electrochemical Effects at Surfactant–Platinum Nanoparticle Interfaces Boost Catalytic Performance

Vile G.;
2017-01-01

Abstract

Nanoparticles are applied in a variety of industrially relevant transformations as heterogeneous catalysts typically with the help of an external force (pressure, temperature, or voltage) to steer the chemistry. The modification of platinum nanoparticles by a phosphate–amino surfactant enables catalysis without external energy supply in the hydrogenation of nitrobenzene to aniline. This can be attributed to the complex surfactant/metal interface which is able to split hydrogen into protons and electrons. The subsequent hydrogenation process mimics the electrochemical reduction described by Haber. The surfactant decorated Pt catalyst is two orders of magnitude more active than the state-of-the-art Pb-poisoned Pt catalyst. Our study provides a new approach to understand the functionality of emerging catalytic systems and can be applied to design new materials with optimal interfaces.
2017
density functional calculations; hydrogenation; interfaces; platinum; surfactants
File in questo prodotto:
File Dimensione Formato  
2017_Electrochemical Effects at Surfactant–Platinum.pdf

accesso aperto

: Publisher’s version
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1189198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact