Accurate modeling of wastewater ultraviolet disinfection is fundamental as support for process optimization and control. Detailed modeling of hydrodynamics and fluence rate via computational fluid dynamics, coupled to laboratory studies of inactivation kinetics, are usually the preferred approach for UV disinfection modeling. Despite this approach often provides accurate predictive performance, it requires significantly high computational time, making it unfeasible for real-time process control. In this study, to enable an effective process control, black-box regression models were assessed as a modeling alternative for UV disinfection, synthesizing hydrodynamics, fluence rate and inactivation kinetics. UV disinfection of a full-scale wastewater treatment plant in Italy was monitored for 10 months, measuring influent and effluent E. coli concentration, turbidity, absorbance at 254 nm, temperature and flow rate at different UV doses. Considering the usually observed distribution of effluent E. coli concentration and the zero inflation of the collected dataset, Poisson, zero-inflated Poisson and Hurdle generalized linear models were tested, as well as two-part models coupling a classifier describing the E. coli zero-count events and a regressor estimating the magnitude of E. coli concentrations in positive-count events. The two-part artificial neural network model showed the best predictive performance, being able of both describing nonlinearities and handling the high proportion of null values in the dataset. The deployment of this model to control ultraviolet disinfection was simulated, estimating a plausible 63% energy saving.

Artificial neural network modeling of full-scale UV disinfection for process control aimed at wastewater reuse

Foschi J.;Turolla A.;Antonelli M.
2021-01-01

Abstract

Accurate modeling of wastewater ultraviolet disinfection is fundamental as support for process optimization and control. Detailed modeling of hydrodynamics and fluence rate via computational fluid dynamics, coupled to laboratory studies of inactivation kinetics, are usually the preferred approach for UV disinfection modeling. Despite this approach often provides accurate predictive performance, it requires significantly high computational time, making it unfeasible for real-time process control. In this study, to enable an effective process control, black-box regression models were assessed as a modeling alternative for UV disinfection, synthesizing hydrodynamics, fluence rate and inactivation kinetics. UV disinfection of a full-scale wastewater treatment plant in Italy was monitored for 10 months, measuring influent and effluent E. coli concentration, turbidity, absorbance at 254 nm, temperature and flow rate at different UV doses. Considering the usually observed distribution of effluent E. coli concentration and the zero inflation of the collected dataset, Poisson, zero-inflated Poisson and Hurdle generalized linear models were tested, as well as two-part models coupling a classifier describing the E. coli zero-count events and a regressor estimating the magnitude of E. coli concentrations in positive-count events. The two-part artificial neural network model showed the best predictive performance, being able of both describing nonlinearities and handling the high proportion of null values in the dataset. The deployment of this model to control ultraviolet disinfection was simulated, estimating a plausible 63% energy saving.
2021
Artificial neural network
Control
E. coli
Reuse
UV disinfection
Wastewater
Zero inflated dataset
Escherichia coli
Neural Networks, Computer
Ultraviolet Rays
Waste Water
Disinfection
Water Purification
File in questo prodotto:
File Dimensione Formato  
2021 Antonelli - JEMA - UV control by ANN.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1189046
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 4
social impact