This paper presents a strategy for optimal manoeuvre design of multi-satellite formation flying in low Earth orbit environment, with the aim of providing a tool for mission operation design. The proposed methodology for formation flying manoeuvres foresees a continuous low-thrust control profile, to enable the operational phases. The design is performed starting from the dynamic representation described in the relative orbital elements, including the main orbital perturbations effects. It also exploits an interface with the classical radial-transversal-normal description to include the maximum delta-v limitation and the safety condition requirements. The methodology is applied to a remote sensing mission study, Formation Flying L-band Aperture Synthesis, for land and ocean application, such as a potential high-resolution Soil Moisture and Ocean Salinity (SMOS) follow-on mission, as part of a European Space Agency mission concept study. Moreover, the results are applicable to a wide range of low Earth orbit missions, exploiting a distributed system, and in particular to Formation Flying L-band Aperture Synthesis (FFLAS) as a follow-on concept to SMOS.

Design of optimal low-thrust manoeuvres for remote sensing multi-satellite formation flying in low Earth orbit

Scala, Francesca;Gaias, Gabriella;Colombo, Camilla;
2021-01-01

Abstract

This paper presents a strategy for optimal manoeuvre design of multi-satellite formation flying in low Earth orbit environment, with the aim of providing a tool for mission operation design. The proposed methodology for formation flying manoeuvres foresees a continuous low-thrust control profile, to enable the operational phases. The design is performed starting from the dynamic representation described in the relative orbital elements, including the main orbital perturbations effects. It also exploits an interface with the classical radial-transversal-normal description to include the maximum delta-v limitation and the safety condition requirements. The methodology is applied to a remote sensing mission study, Formation Flying L-band Aperture Synthesis, for land and ocean application, such as a potential high-resolution Soil Moisture and Ocean Salinity (SMOS) follow-on mission, as part of a European Space Agency mission concept study. Moreover, the results are applicable to a wide range of low Earth orbit missions, exploiting a distributed system, and in particular to Formation Flying L-band Aperture Synthesis (FFLAS) as a follow-on concept to SMOS.
2021
Formation flying
Optimal manoeuvre
Remote sensing
Low thrust
SMOS
FFLAS
File in questo prodotto:
File Dimensione Formato  
SCALF03-21.pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1188459
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 8
social impact