The idea of using Feed-Forward Neural Networks (FFNNs) as regression functions for Nonlinear AutoRegressive eXogenous (NARX) models, leading to models herein named Neural NARXs (NNARXs), has been quite popular in the early days of machine learning applied to nonlinear system identification, owing to their simple structure and ease of application to control design. Nonetheless, few theoretical results are available concerning the stability properties of these models. In this paper we address this problem, providing a sufficient condition under which NNARX models are guaranteed to enjoy the Input-to-State Stability (ISS) and the Incremental Input-to-State Stability (δISS) properties. This condition, which is an inequality on the weights of the underlying FFNN, can be enforced during the training procedure to ensure the stability of the model. The proposed model, along with this stability condition, are tested on the pH neutralization process benchmark, showing satisfactory results. Copyright (C) 2021 The Authors.

Stability of discrete-time feed-forward neural networks in NARX configuration

Bonassi, F;Farina, M;Scattolini, R
2021-01-01

Abstract

The idea of using Feed-Forward Neural Networks (FFNNs) as regression functions for Nonlinear AutoRegressive eXogenous (NARX) models, leading to models herein named Neural NARXs (NNARXs), has been quite popular in the early days of machine learning applied to nonlinear system identification, owing to their simple structure and ease of application to control design. Nonetheless, few theoretical results are available concerning the stability properties of these models. In this paper we address this problem, providing a sufficient condition under which NNARX models are guaranteed to enjoy the Input-to-State Stability (ISS) and the Incremental Input-to-State Stability (δISS) properties. This condition, which is an inequality on the weights of the underlying FFNN, can be enforced during the training procedure to ensure the stability of the model. The proposed model, along with this stability condition, are tested on the pH neutralization process benchmark, showing satisfactory results. Copyright (C) 2021 The Authors.
2021
Proceedings of the 19th IFAC Symposium on System Identification
Neural networks
Nonlinear System Identification
Identification for Control
Input-to-State Stability
Incremental Input-to-State Stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1188221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 6
social impact