We present FAST-Hex, a micro aerial hexarotor platform that allows to seamlessly transit from an under-actuated to a fully-actuated configuration with only one additional control input, a motor that synchronously tilts all propellers. The FAST-Hex adapts its configuration between the more efficient but under-actuated, collinear multi-rotors, and the less efficient but full-pose-tracking, which is attained by non-collinear multi-rotors. On the basis of prior work on minimal input configurable micro aerial vehicle, we mainly stress three aspects: mechanical design, motion control, and experimental validation. Specifically, we present the lightweight mechanical structure of the FAST-Hex that allows to only use one additional input to achieve configurability and full actuation in a vast state space. The motion controller receives as input any reference pose in in R3 SO(3) (3D position + 3D orientation). Full pose tracking is achieved if the reference pose is feasible with respect to actuator constraints. In case of unfeasibility, a new feasible desired trajectory is generated online giving priority to the position tracking over the orientation tracking. Finally, we present a large set of experimental results shading light on all aspects of the control of the FAST-Hex.
FAST-Hex - A Morphing Hexarotor: Design, Mechanical Implementation, Control and Experimental Validation
Giurato M.;Lovera M.;
2022-01-01
Abstract
We present FAST-Hex, a micro aerial hexarotor platform that allows to seamlessly transit from an under-actuated to a fully-actuated configuration with only one additional control input, a motor that synchronously tilts all propellers. The FAST-Hex adapts its configuration between the more efficient but under-actuated, collinear multi-rotors, and the less efficient but full-pose-tracking, which is attained by non-collinear multi-rotors. On the basis of prior work on minimal input configurable micro aerial vehicle, we mainly stress three aspects: mechanical design, motion control, and experimental validation. Specifically, we present the lightweight mechanical structure of the FAST-Hex that allows to only use one additional input to achieve configurability and full actuation in a vast state space. The motion controller receives as input any reference pose in in R3 SO(3) (3D position + 3D orientation). Full pose tracking is achieved if the reference pose is feasible with respect to actuator constraints. In case of unfeasibility, a new feasible desired trajectory is generated online giving priority to the position tracking over the orientation tracking. Finally, we present a large set of experimental results shading light on all aspects of the control of the FAST-Hex.File | Dimensione | Formato | |
---|---|---|---|
RYLLM_OA_01-21.pdf
Open Access dal 28/07/2021
Descrizione: Paper Open Access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.65 MB
Formato
Adobe PDF
|
3.65 MB | Adobe PDF | Visualizza/Apri |
RYLLM01-21.pdf
Accesso riservato
:
Publisher’s version
Dimensione
4.83 MB
Formato
Adobe PDF
|
4.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.