Urban areas are typically characterized by the presence of industrial sites, which are often sources of groundwater contamination, posing a serious threat for the groundwater. In such cases, a crucial step is to find a link between the contaminant sources and freshwater supply wells at risk. As a part of the AMIIGA Project, two different stochastic approaches were applied to assess drinking water supply wells vulnerability in Functional Urban Areas in the presence of several chlorinated hydrocarbons sources in an alluvial aquifer in Milano and a pesticide mega site in a complex geological setting in Poland. In the first case study, the innovative Pilot Point Null-Space Monte Carlo forward particle tracking was used, applying a forward solution instead of the classical backtracking, while in the second case was chosen the classical Monte Carlo methodology. Both case studies represent useful application examples, allowing an effective prioritization of expensive remediation actions in order to protect freshwater wells.

Stochastic particle tracking application in different urban areas in central europe: The Milano (IT) and Jaworzno (PL) case study to secure the drinking water resources

Colombo L.;Mazzon P.;Alberti L.
2021-01-01

Abstract

Urban areas are typically characterized by the presence of industrial sites, which are often sources of groundwater contamination, posing a serious threat for the groundwater. In such cases, a crucial step is to find a link between the contaminant sources and freshwater supply wells at risk. As a part of the AMIIGA Project, two different stochastic approaches were applied to assess drinking water supply wells vulnerability in Functional Urban Areas in the presence of several chlorinated hydrocarbons sources in an alluvial aquifer in Milano and a pesticide mega site in a complex geological setting in Poland. In the first case study, the innovative Pilot Point Null-Space Monte Carlo forward particle tracking was used, applying a forward solution instead of the classical backtracking, while in the second case was chosen the classical Monte Carlo methodology. Both case studies represent useful application examples, allowing an effective prioritization of expensive remediation actions in order to protect freshwater wells.
2021
Contaminated sites
Mega sites
MODFLOW
MODPATH
Null-Space Monte Carlo
Particle tracking
Stochastic modelling
File in questo prodotto:
File Dimensione Formato  
sustainability-13-10291-v2.pdf

accesso aperto

: Publisher’s version
Dimensione 8.28 MB
Formato Adobe PDF
8.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1187836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact