The rotor thermal sensitivity often affects the dynamic behavior of power unit generators. Owing to this phenomenon, increments of field current and other process parameters that are related to it may cause a shaft thermal bow and significant changes in the synchronous vibration. This symptom can also be caused by many other common malfunctions that affect rotating machines. Therefore, diagnostic techniques aimed at identifying the actual fault are very useful for optimizing maintenance activities. The thermal sensitivity of generator rotors can be deemed as a fault because it is commonly caused by a local deterioration of the winding insulation as well as by jamming phenomena between conductors and rotor slots, caused by friction forces due to the different thermal expansions of these components. This paper shows the results obtained applying a diagnostic method, based on multiple linear regression models, which has been developed for the analysis of generator vibrations caused by thermal sensitivity. Nevertheless, nonlinear relationships between vibration and process parameters have also been taken into account. The capabilities of this diagnostic technique have been validated using the analysis of experimental data collected in a power plant. The results of this investigation are shown and discussed in the paper.

An unconventional method for the diagnosis and study of generator rotor thermal bows

Chatterton S.;Pennacchi P.;Vania A.
2021-01-01

Abstract

The rotor thermal sensitivity often affects the dynamic behavior of power unit generators. Owing to this phenomenon, increments of field current and other process parameters that are related to it may cause a shaft thermal bow and significant changes in the synchronous vibration. This symptom can also be caused by many other common malfunctions that affect rotating machines. Therefore, diagnostic techniques aimed at identifying the actual fault are very useful for optimizing maintenance activities. The thermal sensitivity of generator rotors can be deemed as a fault because it is commonly caused by a local deterioration of the winding insulation as well as by jamming phenomena between conductors and rotor slots, caused by friction forces due to the different thermal expansions of these components. This paper shows the results obtained applying a diagnostic method, based on multiple linear regression models, which has been developed for the analysis of generator vibrations caused by thermal sensitivity. Nevertheless, nonlinear relationships between vibration and process parameters have also been taken into account. The capabilities of this diagnostic technique have been validated using the analysis of experimental data collected in a power plant. The results of this investigation are shown and discussed in the paper.
2021
Proceedings of the ASME Turbo Expo
978-0-7918-8503-1
Generator Thermal Sensitivity
Regression Models
Rotating Machine Diagnostic
Shaft Vibrations
File in questo prodotto:
File Dimensione Formato  
GT2021-60036.pdf

Accesso riservato

Descrizione: Full paper
: Publisher’s version
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1186568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact