Organs-on-Chip devices are generally fabricated by means of photo- and soft lithographic techniques. Photolithography is a process that involves the transfer of a pattern onto a substrate by a selective exposure to light. In particular, in this chapter two different photolithography methods will be described: liquid and dry photolithography. In liquid photolithography, a silicon wafer is spin-coated with liquid photoresist and exposed to UV light in order to be patterned. In dry photolithography, the silicon wafer is laminated with resist dry film before being patterned through UV light. In both cases, the UV light can be collimated on top of the wafer either through photomasks or by direct laser exposure. The obtained patterned wafer is then used as a mold for the soft lithographic process (i.e., replica molding) to produce polymer-based microdevices.
Photo and Soft Lithography for Organ-on-Chip Applications
Ferrari E.;Nebuloni F.;Rasponi M.;Occhetta P.
2022-01-01
Abstract
Organs-on-Chip devices are generally fabricated by means of photo- and soft lithographic techniques. Photolithography is a process that involves the transfer of a pattern onto a substrate by a selective exposure to light. In particular, in this chapter two different photolithography methods will be described: liquid and dry photolithography. In liquid photolithography, a silicon wafer is spin-coated with liquid photoresist and exposed to UV light in order to be patterned. In dry photolithography, the silicon wafer is laminated with resist dry film before being patterned through UV light. In both cases, the UV light can be collimated on top of the wafer either through photomasks or by direct laser exposure. The obtained patterned wafer is then used as a mold for the soft lithographic process (i.e., replica molding) to produce polymer-based microdevices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.