We construct stable vector bundles on the space $mathbb{P}(S^d mathbb{C}^{n+1})$ of symmetric forms of degree $d$ in $n+1$ variables which are equivariant for the action of $ ext{SL}_{n+1}(mathbb{C})$, and admit an equivariant free resolution of length $2$. For $n=1$, we obtain new examples of stable vector bundles of rank $d-1$ on $mathbb{P}^d$, which are moreover equivariant for $ ext{SL}_2(mathbb{C})$. The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.

A construction of equivariant bundles on the space of symmetric forms

P. Lella
2022-01-01

Abstract

We construct stable vector bundles on the space $mathbb{P}(S^d mathbb{C}^{n+1})$ of symmetric forms of degree $d$ in $n+1$ variables which are equivariant for the action of $ ext{SL}_{n+1}(mathbb{C})$, and admit an equivariant free resolution of length $2$. For $n=1$, we obtain new examples of stable vector bundles of rank $d-1$ on $mathbb{P}^d$, which are moreover equivariant for $ ext{SL}_2(mathbb{C})$. The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.
2022
stable vector bundles
symmetric forms
group action
equivariant resolution
constant rank matrix
homogeneous bundle
homogeneous variety
quiver representation
File in questo prodotto:
File Dimensione Formato  
1804.06211.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 296.89 kB
Formato Adobe PDF
296.89 kB Adobe PDF Visualizza/Apri
11311-1186023_Lella.pdf

accesso aperto

: Publisher’s version
Dimensione 549.94 kB
Formato Adobe PDF
549.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1186023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact