The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions). © 2013 American Physical Society.

Direct view of hot carrier dynamics in graphene

Crepaldi A.;
2013-01-01

Abstract

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions). © 2013 American Physical Society.
2013
File in questo prodotto:
File Dimensione Formato  
Crepaldi_Johannsen_PhysRevLett.111.027403_Direct View of Hot Carrier Dynamics in Graphene.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1185621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 325
  • ???jsp.display-item.citation.isi??? 287
social impact