Light Detection and Ranging (LiDAR) is a widespread technique for 3D ranging and has widespread use in most automated systems that must interact with the external environment, for instance in industrial and security applications. In this work, we study a novel architecture for Single Photon Avalanche Diode (SPAD) arrays suitable for handheld single point rangefinders, which is aimed at the identification of the objects’ position in the presence of strong ambient background illumination. The system will be developed for an industrial environment, and the array targets a distance range of about 1 m and a precision of few centimeters. Since the laser spot illuminates only a small portion of the array, while all pixels are exposed to background illumination, we propose and validate through Monte Carlo simulations a novel architecture for the identification of the pixels illuminated by the laser spot to perform an adaptive laser spot tracking and a smart sharing of the timing electronics, thus significantly improving the accuracy of the distance measurement. Such a novel architecture represents a robust and effective approach to develop SPAD arrays for industrial applications with extremely high background illumination.

Spot tracking and tdc sharing in spad arrays for tof lidar

Sesta V.;Severini F.;Villa F.;Lussana R.;Zappa F.;
2021

Abstract

Light Detection and Ranging (LiDAR) is a widespread technique for 3D ranging and has widespread use in most automated systems that must interact with the external environment, for instance in industrial and security applications. In this work, we study a novel architecture for Single Photon Avalanche Diode (SPAD) arrays suitable for handheld single point rangefinders, which is aimed at the identification of the objects’ position in the presence of strong ambient background illumination. The system will be developed for an industrial environment, and the array targets a distance range of about 1 m and a precision of few centimeters. Since the laser spot illuminates only a small portion of the array, while all pixels are exposed to background illumination, we propose and validate through Monte Carlo simulations a novel architecture for the identification of the pixels illuminated by the laser spot to perform an adaptive laser spot tracking and a smart sharing of the timing electronics, thus significantly improving the accuracy of the distance measurement. Such a novel architecture represents a robust and effective approach to develop SPAD arrays for industrial applications with extremely high background illumination.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1183849
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact