Let L=∑ j=1 m Xj^2 be a Hörmander sum of squares of vector fields in space R^n, where any Xj is homogeneous of degree 1 with respect to a family of non-isotropic dilations in space. In this paper we prove global estimates and regularity properties for L in the X-Sobolev spaces Wx^k,p(R^n), where X={X1,…,Xm}. In our approach, we combine local results for general Hörmander sums of squares, the homogeneity property of the Xj's, plus a global lifting technique for homogeneous vector fields.

Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares.

S. Biagi;M. Bramanti
2021-01-01

Abstract

Let L=∑ j=1 m Xj^2 be a Hörmander sum of squares of vector fields in space R^n, where any Xj is homogeneous of degree 1 with respect to a family of non-isotropic dilations in space. In this paper we prove global estimates and regularity properties for L in the X-Sobolev spaces Wx^k,p(R^n), where X={X1,…,Xm}. In our approach, we combine local results for general Hörmander sums of squares, the homogeneity property of the Xj's, plus a global lifting technique for homogeneous vector fields.
File in questo prodotto:
File Dimensione Formato  
S. Biagi, A. Bonfiglioli, M. Bramanti - Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares.pdf

Accesso riservato

: Publisher’s version
Dimensione 427.14 kB
Formato Adobe PDF
427.14 kB Adobe PDF   Visualizza/Apri
11311-1183027_Biagi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 254.08 kB
Formato Adobe PDF
254.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1183027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact