This study concerns the problem of compatibility of state constraints with a multiagent control system. Such a system deals with a number of agents so large that only a statistical description is available. For this reason, the state variable is described by a probability measure on Rd representing the density of the agents and evolving according to the so-called continuity equation which is an equation stated in the Wasserstein space of probability measures. The aim of the paper is to provide a necessary and sufficient condition for a given constraint (a closed subset of the Wasserstein space) to be compatible with the controlled continuity equation. This new condition is characterized in a viscosity sense as follows: the distance function to the constraint set is a viscosity supersolution of a suitable Hamilton–Jacobi–Bellman equation stated on the Wasserstein space. As a byproduct and key ingredient of our approach, we obtain a new comparison theorem for evolutionary Hamilton–Jacobi equations in the Wasserstein space.
Compatibility of state constraints and dynamics for multiagent control systems
Cavagnari G.;
2021-01-01
Abstract
This study concerns the problem of compatibility of state constraints with a multiagent control system. Such a system deals with a number of agents so large that only a statistical description is available. For this reason, the state variable is described by a probability measure on Rd representing the density of the agents and evolving according to the so-called continuity equation which is an equation stated in the Wasserstein space of probability measures. The aim of the paper is to provide a necessary and sufficient condition for a given constraint (a closed subset of the Wasserstein space) to be compatible with the controlled continuity equation. This new condition is characterized in a viscosity sense as follows: the distance function to the constraint set is a viscosity supersolution of a suitable Hamilton–Jacobi–Bellman equation stated on the Wasserstein space. As a byproduct and key ingredient of our approach, we obtain a new comparison theorem for evolutionary Hamilton–Jacobi equations in the Wasserstein space.File | Dimensione | Formato | |
---|---|---|---|
CMQ-2021-04-15.pdf
accesso aperto
Descrizione: Articolo postprint
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
666.56 kB
Formato
Adobe PDF
|
666.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.