Mucociliary clearance is a crucial mechanism that supports the elimination of inhaled particles, bacteria, pollution, and hazardous agents from the human airways, and it also limits the diffusion of aerosolized drugs into the airway epithelium. In spite of its relevance, few in vitro models sufficiently address the cumulative effect of the steric and interactive barrier function of mucus on the one hand, and the dynamic mucus transport imposed by ciliary mucus propulsion on the other hand. Here, ad hoc mucus models of physiological and pathological mucus are combined with magnetic artificial cilia to model mucociliary transport in both physiological and pathological states. The modular concept adopted in this study enables the development of mucociliary clearance models with high versatility since these can be easily modified to reproduce phenomena characteristic of healthy and diseased human airways while allowing to determine the effect of each parameter and/or structure separately on the overall mucociliary transport. These modular airway models can be available off-the-shelf because they are exclusively made of readily available materials, thus ensuring reproducibility across different laboratories.

Engineered modular microphysiological models of the human airway clearance phenomena

Pedersoli L.;Briatico-Vangosa F.;Petrini P.;Peneda Pacheco D.
2021-01-01

Abstract

Mucociliary clearance is a crucial mechanism that supports the elimination of inhaled particles, bacteria, pollution, and hazardous agents from the human airways, and it also limits the diffusion of aerosolized drugs into the airway epithelium. In spite of its relevance, few in vitro models sufficiently address the cumulative effect of the steric and interactive barrier function of mucus on the one hand, and the dynamic mucus transport imposed by ciliary mucus propulsion on the other hand. Here, ad hoc mucus models of physiological and pathological mucus are combined with magnetic artificial cilia to model mucociliary transport in both physiological and pathological states. The modular concept adopted in this study enables the development of mucociliary clearance models with high versatility since these can be easily modified to reproduce phenomena characteristic of healthy and diseased human airways while allowing to determine the effect of each parameter and/or structure separately on the overall mucociliary transport. These modular airway models can be available off-the-shelf because they are exclusively made of readily available materials, thus ensuring reproducibility across different laboratories.
2021
cilia
dynamic systems
microphysiological models
mucociliary clearance
mucus
File in questo prodotto:
File Dimensione Formato  
bit.27866.pdf

Accesso riservato

Descrizione: Versione pubblicata
: Publisher’s version
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1182332
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact