Nowadays, one important challenge in cyber-physical production systems is updating dynamic production schedules through an automated decision-making performed while the production is running. The condition of the manufacturing equipment may in fact lead to schedule unfeasibility or inefficiency, thus requiring responsiveness to preserve productivity and reduce the operational costs. In order to address current limitations of traditional scheduling methods, this work proposes a new framework that exploits the aggregation of several digital twins, representing different physical assets and their autonomous decision-making, together with a global digital twin, in order to perform production scheduling optimization when it is needed. The decision-making process is supported on a fuzzy inference system using the state or conditions of different assets and the production rate of the whole system. The condition of the assets is predicted by the condition-based monitoring modules in the local digital twins of the workstations, whereas the production rate is evaluated and assured by the global digital twin of the shop floor. This paper presents a framework for decentralized and integrated decision-making for re-scheduling of a cyber-physical production system, and the validation and proof-of-concept of the proposed method in an Industry 4.0 pilot line of assembly process. The experimental results demonstrate that the proposed framework is capable to detect changes in the manufacturing process and to make appropriate decisions for re-scheduling the process.

A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins

Negri E.;Biscardo G.;Fumagalli L.;Macchi M.
2021-01-01

Abstract

Nowadays, one important challenge in cyber-physical production systems is updating dynamic production schedules through an automated decision-making performed while the production is running. The condition of the manufacturing equipment may in fact lead to schedule unfeasibility or inefficiency, thus requiring responsiveness to preserve productivity and reduce the operational costs. In order to address current limitations of traditional scheduling methods, this work proposes a new framework that exploits the aggregation of several digital twins, representing different physical assets and their autonomous decision-making, together with a global digital twin, in order to perform production scheduling optimization when it is needed. The decision-making process is supported on a fuzzy inference system using the state or conditions of different assets and the production rate of the whole system. The condition of the assets is predicted by the condition-based monitoring modules in the local digital twins of the workstations, whereas the production rate is evaluated and assured by the global digital twin of the shop floor. This paper presents a framework for decentralized and integrated decision-making for re-scheduling of a cyber-physical production system, and the validation and proof-of-concept of the proposed method in an Industry 4.0 pilot line of assembly process. The experimental results demonstrate that the proposed framework is capable to detect changes in the manufacturing process and to make appropriate decisions for re-scheduling the process.
2021
Condition-based Monitoring
Cyber-physical systems
Decision-making
Digital twin
Fuzzy logic
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1367578821000262-main.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 6.24 MB
Formato Adobe PDF
6.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1181809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 145
  • ???jsp.display-item.citation.isi??? 53
social impact