In this work, we propose an Inverse Uncertainty Quantification (IUQ) approach to assigning Probability Density Functions (PDFs) to uncertain input parameters of Thermal-Hydraulic (T-H) models used to assess the reliability of passive safety systems. The approach uses experimental data within a Bayesian framework. The application to a RELAP5-3D model of the PERSEO (In-Pool Energy Removal System for Emergency Operation) facility located at SIET laboratory (Piacenza, Italy) is demonstrated. Principal Component Analysis (PCA) is applied for output dimensionality reduction and Kriging meta-modeling is used to emulate the reduced set of RELAP5-3D code outputs. This is done to decrease the computational cost of the Markov Chain Monte Carlo (MCMC) posterior sampling of the uncertain input parameters, which requires a large number of model simulations.
A Bayesian framework of inverse uncertainty quantification with principal component analysis and Kriging for the reliability analysis of passive safety systems
Di Maio F.;Zio E.
2021-01-01
Abstract
In this work, we propose an Inverse Uncertainty Quantification (IUQ) approach to assigning Probability Density Functions (PDFs) to uncertain input parameters of Thermal-Hydraulic (T-H) models used to assess the reliability of passive safety systems. The approach uses experimental data within a Bayesian framework. The application to a RELAP5-3D model of the PERSEO (In-Pool Energy Removal System for Emergency Operation) facility located at SIET laboratory (Piacenza, Italy) is demonstrated. Principal Component Analysis (PCA) is applied for output dimensionality reduction and Kriging meta-modeling is used to emulate the reduced set of RELAP5-3D code outputs. This is done to decrease the computational cost of the Markov Chain Monte Carlo (MCMC) posterior sampling of the uncertain input parameters, which requires a large number of model simulations.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0029549321001825-main.pdf
Accesso riservato
:
Publisher’s version
Dimensione
5.12 MB
Formato
Adobe PDF
|
5.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.