In nuclear fusion systems, such as ITER, Superconducting Magnets (SMs) will be employed to magnetically confine the plasma. A Superconducting Magnet Cryogenic Cooling Circuit (SMCCC) must keep the SMs at cryogenic temperature to preserve their superconductive properties. Thus, a Loss-Of-Flow Accident (LOFA) in the SMCCC is to be avoided. In this work, a three-step methodology for the prompt identification of LOFA precursors (i.e., those component failures leading to a LOFA) is developed. First, accident scenarios are randomly generated by Monte Carlo sampling of the SMCCC components failures and the corresponding transient system response is simulated by a deterministic thermal-hydraulic code. In this phase, fast-running Proper Orthogonal Decomposition (POD)based Kriging metamodels, adaptively trained to mimic the behavior of the detailed long-running code, are employed to reduce the associated computational burden. Second, the scenarios generated are grouped by a Spectral Clustering (SC) embedding the Fuzzy C-Means (FCM), in order to characterize the principal patterns of system evolution towards abnormal conditions (e.g., a LOFA). Third, an On-line Supervised Spectral Clustering (OSSC) approach is developed to assign signals measured during plant operation to one of the prototypical clusters identified, which may reveal the corresponding LOFA precursors (in terms of combinations of failed SMCCC components). The devised method is applied to the simplified model of a cryogenic cooling circuit of a single module of the ITER Central Solenoid. Results show that the approach developed timely identifies 95% of LOFA events and approximately 80% of the corresponding precursors.

Advanced methods for loss-of-flow accident precursors identification in a superconducting magnet cryogenic cooling circuit

Di Maio F.;Zio E.;Zio E.
2020-01-01

Abstract

In nuclear fusion systems, such as ITER, Superconducting Magnets (SMs) will be employed to magnetically confine the plasma. A Superconducting Magnet Cryogenic Cooling Circuit (SMCCC) must keep the SMs at cryogenic temperature to preserve their superconductive properties. Thus, a Loss-Of-Flow Accident (LOFA) in the SMCCC is to be avoided. In this work, a three-step methodology for the prompt identification of LOFA precursors (i.e., those component failures leading to a LOFA) is developed. First, accident scenarios are randomly generated by Monte Carlo sampling of the SMCCC components failures and the corresponding transient system response is simulated by a deterministic thermal-hydraulic code. In this phase, fast-running Proper Orthogonal Decomposition (POD)based Kriging metamodels, adaptively trained to mimic the behavior of the detailed long-running code, are employed to reduce the associated computational burden. Second, the scenarios generated are grouped by a Spectral Clustering (SC) embedding the Fuzzy C-Means (FCM), in order to characterize the principal patterns of system evolution towards abnormal conditions (e.g., a LOFA). Third, an On-line Supervised Spectral Clustering (OSSC) approach is developed to assign signals measured during plant operation to one of the prototypical clusters identified, which may reveal the corresponding LOFA precursors (in terms of combinations of failed SMCCC components). The devised method is applied to the simplified model of a cryogenic cooling circuit of a single module of the ITER Central Solenoid. Results show that the approach developed timely identifies 95% of LOFA events and approximately 80% of the corresponding precursors.
2020
Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference
978-981-14-8593-0
Adaptive Kriging meta-model
Cryogenic Cooling Circuit
ITER Central Solenoid Magnet
Loss-Of-Flow Accident
Precursors identification
Spectral Clustering
File in questo prodotto:
File Dimensione Formato  
5064.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 465.27 kB
Formato Adobe PDF
465.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1181014
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact