Electric vehicles are spreading in automotive industry pushed by the need of reducing greenhouse gas. However, the use of multiple electric motors, i.e., one per wheel, allows to redefine the vehicle powertrain layout with great benefits on vehicle dynamics. Electric motors braking torque is in general not enough to produce high decelerations. Hydraulic friction brakes are still necessary for safety reasons and to avoid oversized motors. This paper presents a control strategy for distributed electric motors (EM), one per wheel, to maximize the regenerative braking. The controller handles cooperative braking among EMs and hydraulic brakes, which are still necessary to guarantee top braking performance of the car. The proposed algorithm considers the driver requested braking torque as well as the required yaw moment by stability control system. Motor efficiency map and wheel normal load are considered to optimally distribute the torques. With respect to conventional distribution strategies, the presented algorithm improves performance, maximizing the regenerative braking power.

Optimal Cooperative Brake Distribution Strategy for IWM Vehicle Accounting for Electric and Friction Braking Torques

Vignati, Michele;Belloni, Mattia;Tarsitano, Davide;Sabbioni, Edoardo
2021-01-01

Abstract

Electric vehicles are spreading in automotive industry pushed by the need of reducing greenhouse gas. However, the use of multiple electric motors, i.e., one per wheel, allows to redefine the vehicle powertrain layout with great benefits on vehicle dynamics. Electric motors braking torque is in general not enough to produce high decelerations. Hydraulic friction brakes are still necessary for safety reasons and to avoid oversized motors. This paper presents a control strategy for distributed electric motors (EM), one per wheel, to maximize the regenerative braking. The controller handles cooperative braking among EMs and hydraulic brakes, which are still necessary to guarantee top braking performance of the car. The proposed algorithm considers the driver requested braking torque as well as the required yaw moment by stability control system. Motor efficiency map and wheel normal load are considered to optimally distribute the torques. With respect to conventional distribution strategies, the presented algorithm improves performance, maximizing the regenerative braking power.
2021
File in questo prodotto:
File Dimensione Formato  
2021_Hindawi_brakedistribution_v5.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1180893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact