Globally about 800 million people live without electricity at home, over two thirds of which are in sub-Saharan Africa. Planning electricity access infrastructure and allocating resources efficiently requires a careful assessment of the diverse energy needs across space, time, and sectors. Because of data scarcity, most country or regional-scale electrification planning studies have however assumed a spatio-temporally homogeneous (top-down) potential electricity demand. Poorly representing the heterogeneity in the potential electricity demand across space, time, and energy sectors can lead to inappropriate energy planning, inaccurate energy system sizing, and misleading cost assessments. Here we introduce M-LED, a Multi-sectoral Latent Electricity Demand geospatial data processing platform to estimate electricity demand in communities that live in energy poverty. The platform shows how big data and bottom-up energy modelling can be leveraged together to represent the potential electricity demand with high spatio-temporal and sectoral granularity. We apply the methodology to Kenya as a country-study and devote specific attention to the implications for water-energy-agriculture-development interlinkages. A more detailed representation of the demand-side in large-scale electrification planning tools bears a potential for improving energy planning and policy.
The M-LED platform: advancing electricity demand assessment for communities living in energy poverty
Nicolo Stevanato;Emanuela Colombo;
2021-01-01
Abstract
Globally about 800 million people live without electricity at home, over two thirds of which are in sub-Saharan Africa. Planning electricity access infrastructure and allocating resources efficiently requires a careful assessment of the diverse energy needs across space, time, and sectors. Because of data scarcity, most country or regional-scale electrification planning studies have however assumed a spatio-temporally homogeneous (top-down) potential electricity demand. Poorly representing the heterogeneity in the potential electricity demand across space, time, and energy sectors can lead to inappropriate energy planning, inaccurate energy system sizing, and misleading cost assessments. Here we introduce M-LED, a Multi-sectoral Latent Electricity Demand geospatial data processing platform to estimate electricity demand in communities that live in energy poverty. The platform shows how big data and bottom-up energy modelling can be leveraged together to represent the potential electricity demand with high spatio-temporal and sectoral granularity. We apply the methodology to Kenya as a country-study and devote specific attention to the implications for water-energy-agriculture-development interlinkages. A more detailed representation of the demand-side in large-scale electrification planning tools bears a potential for improving energy planning and policy.File | Dimensione | Formato | |
---|---|---|---|
Falchetta_2021_Environ._Res._Lett._16_074038.pdf
accesso aperto
:
Publisher’s version
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.