Data continuously gathered monitoring the spreading of the COVID-19 pandemic form an unbounded flow of data. Accurately forecasting if the infections will increase or decrease has a high impact, but it is challenging because the pandemic spreads and contracts periodically. Technically, the flow of data is said to be imbalanced and subject to concept drifts because signs of decrements are the minority class during the spreading periods, while they become the majority class in the contraction periods and the other way round. In this paper, we propose a case study applying the Continuous Synthetic Minority Oversampling Technique (C-SMOTE), a novel meta-strategy to pipeline with Streaming Machine Learning (SML) classification algorithms, to forecast the COVID-19 pandemic trend. Benchmarking SML pipelines that use C-SMOTE against state-of-the-art methods on a COVID-19 dataset, we bring statistical evidence that models learned using C-SMOTE are better.
Predict COVID-19 Spreading With C-SMOTE
A. Bernardo;E. Della Valle
2021-01-01
Abstract
Data continuously gathered monitoring the spreading of the COVID-19 pandemic form an unbounded flow of data. Accurately forecasting if the infections will increase or decrease has a high impact, but it is challenging because the pandemic spreads and contracts periodically. Technically, the flow of data is said to be imbalanced and subject to concept drifts because signs of decrements are the minority class during the spreading periods, while they become the majority class in the contraction periods and the other way round. In this paper, we propose a case study applying the Continuous Synthetic Minority Oversampling Technique (C-SMOTE), a novel meta-strategy to pipeline with Streaming Machine Learning (SML) classification algorithms, to forecast the COVID-19 pandemic trend. Benchmarking SML pipelines that use C-SMOTE against state-of-the-art methods on a COVID-19 dataset, we bring statistical evidence that models learned using C-SMOTE are better.File | Dimensione | Formato | |
---|---|---|---|
45-Conference paper-1114-1-10-20210702.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.