Microscopy resolution below the diffraction limit can be achieved by exploiting quantum light properties. NitrogenVacancy (NV) color centers in diamond, dye molecules and quantum dots are examples of single-photon emitters, whose antibunching property allows super-resolution imaging through the measurement of high-order autocorrelation functions. In this work, we present a novel Single Photon Avalanche Diode (SPAD) array architecture optimized for n-fold photon coincidence counting, in each point across the whole sensitive area. It is implemented in a 160 nm Bipolar-CMOS-DMOS (BCD) technology, and it includes 24 × 24 SPAD pixels with 50-μm pixel pitch and 10-μm SPAD diameter. Multi-photon coincidences (within time windows ranging from 2 ns to 500 ns) are identified by post-processing of the in-pixel timing data. Given the expected low photon rate on the detector in quantum imaging applications, on-chip logic discards unwanted information to limit readout throughput and data storage. In fact, reading the whole array would take 3 µs, while skipping rows detecting no photon reduces the readout time to 240 ns in case of no photon detected over the entire array. Moreover, we implemented a multi-gate approach, which avoids halting the array during readout, thus enabling multiple data acquisitions. Thanks to these power-saving expedients and efficient readout, the architecture is scalable towards multiple modules, such as 48 × 48 or 96 × 96-pixel arrays. Finally, it features the possibility of being coupled with a micro-lens array to reach a 78% equivalent fill-factor.

Design of a 24×24 SPAD imager for multi-photon coincidence-detection in super resolution microscopy

Madonini, Francesca;Severini, Fabio;Incoronato, Alfonso;Conca, Enrico;Villa, Federica
2021

Abstract

Microscopy resolution below the diffraction limit can be achieved by exploiting quantum light properties. NitrogenVacancy (NV) color centers in diamond, dye molecules and quantum dots are examples of single-photon emitters, whose antibunching property allows super-resolution imaging through the measurement of high-order autocorrelation functions. In this work, we present a novel Single Photon Avalanche Diode (SPAD) array architecture optimized for n-fold photon coincidence counting, in each point across the whole sensitive area. It is implemented in a 160 nm Bipolar-CMOS-DMOS (BCD) technology, and it includes 24 × 24 SPAD pixels with 50-μm pixel pitch and 10-μm SPAD diameter. Multi-photon coincidences (within time windows ranging from 2 ns to 500 ns) are identified by post-processing of the in-pixel timing data. Given the expected low photon rate on the detector in quantum imaging applications, on-chip logic discards unwanted information to limit readout throughput and data storage. In fact, reading the whole array would take 3 µs, while skipping rows detecting no photon reduces the readout time to 240 ns in case of no photon detected over the entire array. Moreover, we implemented a multi-gate approach, which avoids halting the array during readout, thus enabling multiple data acquisitions. Thanks to these power-saving expedients and efficient readout, the architecture is scalable towards multiple modules, such as 48 × 48 or 96 × 96-pixel arrays. Finally, it features the possibility of being coupled with a micro-lens array to reach a 78% equivalent fill-factor.
Quantum Optics and Photon Counting 2021
9781510643765
9781510643772
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1179955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact