Knowledge of extreme pressures and fluctuations within stilling basins is of the utmost importance, as they may cause potential severe damages. It is complicated to measure the fluctuating pressures of hydraulic jumps in real-scale structures. Therefore, little information is available about the pressure fluctuations in the literature. In this paper, minimal and maximal pressures were analyzed on the flat bed of a stilling basin downstream of an Ogee spillway. Attention has been focused on dimensionless pressures related to the low and high cumulative probabilities of occurrence (P*0.1% and P*99.9%), respectively. The results were presented based on the laboratory-scale experiments. These parameters for the relatively high Froude numbers have not been investigated. The total standard uncertainty for the dimensionless mean pressures (P*m) was obtained around 1.87%. Spectral density analysis showed that the dominant frequency in the classical hydraulic jumps was about 4 HZ. Low-frequency of pressure fluctuations indicated the existence of large-scale vortices. In the zone near the spillway toe, P*0.1% reached negative values of around -0.3. The maximum values of pressure coefficients, namely |CP0.1%|max and CP99.9%max, were achieved around 0.19 and 0.24, respectively. New original expressions were proposed for P*0.1% and P*99.9%, which are useful for estimating extreme pressures.

Analysis of minimal and maximal pressures, uncertainty and spectral density of fluctuating pressures beneath classical hydraulic jumps

Bocchiola D.
2020-01-01

Abstract

Knowledge of extreme pressures and fluctuations within stilling basins is of the utmost importance, as they may cause potential severe damages. It is complicated to measure the fluctuating pressures of hydraulic jumps in real-scale structures. Therefore, little information is available about the pressure fluctuations in the literature. In this paper, minimal and maximal pressures were analyzed on the flat bed of a stilling basin downstream of an Ogee spillway. Attention has been focused on dimensionless pressures related to the low and high cumulative probabilities of occurrence (P*0.1% and P*99.9%), respectively. The results were presented based on the laboratory-scale experiments. These parameters for the relatively high Froude numbers have not been investigated. The total standard uncertainty for the dimensionless mean pressures (P*m) was obtained around 1.87%. Spectral density analysis showed that the dominant frequency in the classical hydraulic jumps was about 4 HZ. Low-frequency of pressure fluctuations indicated the existence of large-scale vortices. In the zone near the spillway toe, P*0.1% reached negative values of around -0.3. The maximum values of pressure coefficients, namely |CP0.1%|max and CP99.9%max, were achieved around 0.19 and 0.24, respectively. New original expressions were proposed for P*0.1% and P*99.9%, which are useful for estimating extreme pressures.
2020
Classical hydraulic jump
Cumulative probabilities of occurrence
Minimal and maximal pressures
Pressure coefficients
Spectral density analysis
Total standard uncertainty
File in questo prodotto:
File Dimensione Formato  
ws020051909.pdf

accesso aperto

: Publisher’s version
Dimensione 763.32 kB
Formato Adobe PDF
763.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1179645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact