This paper presents a comparison of the vertical total electron content (vTEC) estimated over Italy using two different approaches: the GPS Global Ionosphere Maps (GIMs) and the socalled “calibration technique” developed by Ciraolo in 2007. The study has been carried out at a regional level by considering three Italian dual-frequency stations of the GPS permanent network “Rete Integrata Nazionale GPS (RING)". The GPS receivers are permanently installed at Madesimo (geographical coordinates: 46.5 N, 9.4 E), Rome (geographical coordinates: 41.8 N, 12.5 E) and Resuttano (geographical coordinates: 37.7 N, 14.1 E), respectively in the north, center and south of Italy. Time windows selected for the analysis include periods of both low (July 2008 to June 2009) and high (September 2013 to August 2014) solar activity. The two datasets have also been studied considering both quiet and disturbed geomagnetic activity conditions. Moreover, the effects of an extreme geomagnetic storm have been investigated in March 2015 when the well-known St. Patrick storm occurred. Overall, GIM estimated values are always higher than those calibrated by the Ciraolo procedure for all the considered datasets. The differences between the two methods increase as the latitude decreases, and they increase as the solar activity intensifies. The outcomes of this study shall be helpful when applying GlMs at a regional level.

Performance evaluation of VTEC GIMs for regional applications during different solar activity periods, using RING TEC values

Tornatore V.;
2021-01-01

Abstract

This paper presents a comparison of the vertical total electron content (vTEC) estimated over Italy using two different approaches: the GPS Global Ionosphere Maps (GIMs) and the socalled “calibration technique” developed by Ciraolo in 2007. The study has been carried out at a regional level by considering three Italian dual-frequency stations of the GPS permanent network “Rete Integrata Nazionale GPS (RING)". The GPS receivers are permanently installed at Madesimo (geographical coordinates: 46.5 N, 9.4 E), Rome (geographical coordinates: 41.8 N, 12.5 E) and Resuttano (geographical coordinates: 37.7 N, 14.1 E), respectively in the north, center and south of Italy. Time windows selected for the analysis include periods of both low (July 2008 to June 2009) and high (September 2013 to August 2014) solar activity. The two datasets have also been studied considering both quiet and disturbed geomagnetic activity conditions. Moreover, the effects of an extreme geomagnetic storm have been investigated in March 2015 when the well-known St. Patrick storm occurred. Overall, GIM estimated values are always higher than those calibrated by the Ciraolo procedure for all the considered datasets. The differences between the two methods increase as the latitude decreases, and they increase as the solar activity intensifies. The outcomes of this study shall be helpful when applying GlMs at a regional level.
2021
Calibration technique
GIM maps
GNSS
Ionosphere
RING Network
Solar and geomagnetic activity
St. Patrick storm
TEC
File in questo prodotto:
File Dimensione Formato  
2021_Iono.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 4.75 MB
Formato Adobe PDF
4.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1178452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact