Cultural Heritage (CH) 3D digitisation is getting increasing attention and importance. Advanced survey techniques provide as output a 3D point cloud, wholly and accurately describing even the most complex architectural geometry with a priori established accuracy. These 3D point models are generally used as the base for the realisation of 2D technical drawings and 3D advanced representations. During the last 12 years, the 3DSurveyGroup (3DSG, Politecnico di Milano) conduced an omni-comprehensive, multi-technique survey, obtaining the full point cloud of Milan Cathedral, from which were produced the 2D technical drawings and the 3D model of the Main Spire used by the Veneranda Fabbrica del Duomo di Milano (VF) to plan its periodic maintenance and inspection activities on the Cathedral. Using the survey product directly to plan VF activities would help to skip a long-lasting, uneconomical and manual process of 2D and 3D technical elaboration extraction. In order to do so, the unstructured point cloud data must be enriched with semantics, providing a hierarchical structure that can communicate with a powerful, flexible information system able to effectively manage both point clouds and 3D geometries as hybrid models. For this purpose, the point cloud was segmented using a machine-learning algorithm with multi-level multi-resolution (MLMR) approach in order to obtain a manageable, reliable and repeatable dataset. This reverse engineering process allowed to identify directly on the point cloud the main architectonic elements that are then re-organised in a logical structure inserted inside the informative system built inside the 3DExperience environment, developed by Dassault Systémes.

A HYBRID MODEL FOR THE REVERSE ENGINEERING OF THE MILAN CATHEDRAL. CHALLENGES AND LESSON LEARNT

Spettu, Franco;Teruggi, Simone;Achille, Cristiana;Fassi, Francesco
2021-01-01

Abstract

Cultural Heritage (CH) 3D digitisation is getting increasing attention and importance. Advanced survey techniques provide as output a 3D point cloud, wholly and accurately describing even the most complex architectural geometry with a priori established accuracy. These 3D point models are generally used as the base for the realisation of 2D technical drawings and 3D advanced representations. During the last 12 years, the 3DSurveyGroup (3DSG, Politecnico di Milano) conduced an omni-comprehensive, multi-technique survey, obtaining the full point cloud of Milan Cathedral, from which were produced the 2D technical drawings and the 3D model of the Main Spire used by the Veneranda Fabbrica del Duomo di Milano (VF) to plan its periodic maintenance and inspection activities on the Cathedral. Using the survey product directly to plan VF activities would help to skip a long-lasting, uneconomical and manual process of 2D and 3D technical elaboration extraction. In order to do so, the unstructured point cloud data must be enriched with semantics, providing a hierarchical structure that can communicate with a powerful, flexible information system able to effectively manage both point clouds and 3D geometries as hybrid models. For this purpose, the point cloud was segmented using a machine-learning algorithm with multi-level multi-resolution (MLMR) approach in order to obtain a manageable, reliable and repeatable dataset. This reverse engineering process allowed to identify directly on the point cloud the main architectonic elements that are then re-organised in a logical structure inserted inside the informative system built inside the 3DExperience environment, developed by Dassault Systémes.
2021
Proceedings ARQUEOLÓGICA 2.0 - 9th International Congress & 3rd GEORES - GEOmatics and pREServation
cultural heritage, classification, reverse engineering, point cloud, machine learning, BIM
File in questo prodotto:
File Dimensione Formato  
Spettu et al - A HYBRID MODEL FOR THE REVERSE ENGINEERING OF THE MILAN CATHEDRAL. CHALLENGES AND LESSON LEARNT.pdf

accesso aperto

Descrizione: Versione definitiva pubblicata negli atti del convegno
: Publisher’s version
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1178268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact