In online social media platforms, users can express their ideas by posting original content or by adding comments and responses to existing posts, thus generating virtual discussions and conversations. Studying these conversations is essential for understanding the online communication behavior of users. This study proposes a novel approach to retrieve popular patterns on online conversations using network-based analysis. The analysis consists of two main stages: intent analysis and network generation. Users’ intention is detected using keyword-based categorization of posts and comments, integrated with classification through Naïve Bayes and Support Vector Machine algorithms for uncategorized comments. A continuous human-in-the-loop approach further improves the keyword-based classification. To build and understand communication patterns among the users, we build conversation graphs starting from the hierarchical structure of posts and comments, using a directed multigraph network. The experiments categorize 90% comments with 98% accuracy on a real social media dataset. The model then identifies relevant patterns in terms of shape and content; and finally determines the relevance and frequency of the patterns. Results show that the most popular online discussion patterns obtained from conversation graphs resemble real-life interactions and communication.

Conversation Graphs in Online Social Media

Brambilla, Marco;Javadian, Alireza;Sulistiawati, Amin Endah
2021-01-01

Abstract

In online social media platforms, users can express their ideas by posting original content or by adding comments and responses to existing posts, thus generating virtual discussions and conversations. Studying these conversations is essential for understanding the online communication behavior of users. This study proposes a novel approach to retrieve popular patterns on online conversations using network-based analysis. The analysis consists of two main stages: intent analysis and network generation. Users’ intention is detected using keyword-based categorization of posts and comments, integrated with classification through Naïve Bayes and Support Vector Machine algorithms for uncategorized comments. A continuous human-in-the-loop approach further improves the keyword-based classification. To build and understand communication patterns among the users, we build conversation graphs starting from the hierarchical structure of posts and comments, using a directed multigraph network. The experiments categorize 90% comments with 98% accuracy on a real social media dataset. The model then identifies relevant patterns in terms of shape and content; and finally determines the relevance and frequency of the patterns. Results show that the most popular online discussion patterns obtained from conversation graphs resemble real-life interactions and communication.
2021
Web Engineering
978-3-030-74295-9
978-3-030-74296-6
Network analysis
Conversation graph
Intent analysis
Social media
Instagram
Discourse analysis
Online conversation
File in questo prodotto:
File Dimensione Formato  
ConversationGraphs.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1177007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact