The scientific community is active in developing new models and methods to help reach the ambitious target set by UN SDGs7: universal access to electricity by 2030. Efficient planning of distribution networks is a complex and multivariate task, which is usually split into multiple subproblems to reduce the number of variables. The present work addresses the problem of optimal secondary substation siting, by means of different clustering techniques. In contrast with the majority of approaches found in the literature, which are devoted to the planning of MV grids in already electrified urban areas, this work focuses on greenfield planning in rural areas. K-means algorithm, hierarchical agglomerative clustering, and a method based on optimal weighted tree partitioning are adapted to the problem and run on two real case studies, with different population densities. The algorithms are compared in terms of different indicators useful to assess the feasibility of the solutions found. The algorithms have proven to be effective in addressing some of the crucial aspects of substations siting and to constitute relevant improvements to the classic K-means approach found in the literature. However, it is found that it is very challenging to conjugate an acceptable geographical span of the area served by a single substation with a substation power high enough to justify the installation when the load density is very low. In other words, well known standards adopted in industrialized countries do not fit with developing countries’ requirements.

Clustering Techniques for Secondary Substations Siting

Corigliano, Silvia;Rosato, Federico;Merlo, Marco
2021-01-01

Abstract

The scientific community is active in developing new models and methods to help reach the ambitious target set by UN SDGs7: universal access to electricity by 2030. Efficient planning of distribution networks is a complex and multivariate task, which is usually split into multiple subproblems to reduce the number of variables. The present work addresses the problem of optimal secondary substation siting, by means of different clustering techniques. In contrast with the majority of approaches found in the literature, which are devoted to the planning of MV grids in already electrified urban areas, this work focuses on greenfield planning in rural areas. K-means algorithm, hierarchical agglomerative clustering, and a method based on optimal weighted tree partitioning are adapted to the problem and run on two real case studies, with different population densities. The algorithms are compared in terms of different indicators useful to assess the feasibility of the solutions found. The algorithms have proven to be effective in addressing some of the crucial aspects of substations siting and to constitute relevant improvements to the classic K-means approach found in the literature. However, it is found that it is very challenging to conjugate an acceptable geographical span of the area served by a single substation with a substation power high enough to justify the installation when the load density is very low. In other words, well known standards adopted in industrialized countries do not fit with developing countries’ requirements.
2021
File in questo prodotto:
File Dimensione Formato  
energies-14-01028-v2.pdf

accesso aperto

: Publisher’s version
Dimensione 10.01 MB
Formato Adobe PDF
10.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1175411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact