This article develops a detection framework using Bayesian philosophy by adaptation of Shiryaev's and Roberts' methodology. We propose two unifying versions directly applicable in industrial process control and easily extendable to public health infectious disease surveillance via some data detrending and/or demodulation. The root idea uses the sum of likelihood ratios upon which an optimal stopping criterion is based. It sets a prior on the epoch of a change, allows the flexibility to elicit a prior distribution on other process parameters, and attempts to minimize an expected loss function. A sensitivity analysis is conducted for validation and performance assessment and analytical formulas are derived. The methods are successfully applied to the European Union Centre for Disease Control (ECDC) open-source global COVID-19 incidence data. We further lay out scenarios where interest may switch to the detection of separate outbreaks with similar syndromes during an already evolving epidemic. We view our approach as a toolkit with a potential to augment early reports to sentinels in syndromic surveillance and in biosurveillance.

Sequential detection framework for real-time biosurveillance based on Shiryaev-Roberts procedure with illustrations using COVID-19 incidence data

Tsiamyrtzis P.
2021-01-01

Abstract

This article develops a detection framework using Bayesian philosophy by adaptation of Shiryaev's and Roberts' methodology. We propose two unifying versions directly applicable in industrial process control and easily extendable to public health infectious disease surveillance via some data detrending and/or demodulation. The root idea uses the sum of likelihood ratios upon which an optimal stopping criterion is based. It sets a prior on the epoch of a change, allows the flexibility to elicit a prior distribution on other process parameters, and attempts to minimize an expected loss function. A sensitivity analysis is conducted for validation and performance assessment and analytical formulas are derived. The methods are successfully applied to the European Union Centre for Disease Control (ECDC) open-source global COVID-19 incidence data. We further lay out scenarios where interest may switch to the detection of separate outbreaks with similar syndromes during an already evolving epidemic. We view our approach as a toolkit with a potential to augment early reports to sentinels in syndromic surveillance and in biosurveillance.
2021
60G15
60G40
62F15
62L10
Bayesian sequential update
biosurveillance
change point
COVID-19
dynamic processing
Shiryaev-Roberts procedure
syndromic surveillance
File in questo prodotto:
File Dimensione Formato  
Sequential detection framework for real time biosurveillance based on Shiryaev Roberts procedure with illustrations using COVID 19 incidence data.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri
0Sequential detection framework for real time biosurveillance based on Shiryaev Roberts procedure with illustrations using COVID 19 incidence data.pdf

Open Access dal 12/05/2022

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1175134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact