We prove a sharp quantitative version of Hales' isoperimetric honeycomb theorem by exploiting a quantitative isoperimetric inequality for polygons and an improved convergence theorem for planar bubble clusters. Further applications include the description of isoperimetric tilings of the torus with respect to almost unit-area constraints or with respect to almost flat Riemannian metrics.
A sharp quantitative version of Hales' isoperimetric honeycomb theorem
Caroccia M.;
2016-01-01
Abstract
We prove a sharp quantitative version of Hales' isoperimetric honeycomb theorem by exploiting a quantitative isoperimetric inequality for polygons and an improved convergence theorem for planar bubble clusters. Further applications include the description of isoperimetric tilings of the torus with respect to almost unit-area constraints or with respect to almost flat Riemannian metrics.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A sharp quantitative version of Hales’ isoperimetric honeycomb theorem.pdf
Accesso riservato
:
Publisher’s version
Dimensione
526.08 kB
Formato
Adobe PDF
|
526.08 kB | Adobe PDF | Visualizza/Apri |
11311-1174054_Caroccia.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
298.99 kB
Formato
Adobe PDF
|
298.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.